540 research outputs found

    Depletion of density of states near Fermi energy induced by disorder and electron correlation in alloys

    Full text link
    We have performed high resolution photoemission study of substitutionally disordered alloys Cu-Pt, Cu-Pd, Cu-Ni, and Pd-Pt. The ratios between alloy spectra and pure metal spectra are found to have dips at the Fermi level when the residual resistivity is high and when rather strong repulsive electron-electron interaction is expected. This is in accordance with Altshuler and Aronov's model which predicts depletion of density of states at the Fermi level when both disorder and electron correlation are present.Comment: 1 tex file and 4 ps file

    Dielectronic Resonance Method for Measuring Isotope Shifts

    Full text link
    Longstanding problems in the comparison of very accurate hyperfine-shift measurements to theory were partly overcome by precise measurements on few-electron highly-charged ions. Still the agreement between theory and experiment is unsatisfactory. In this paper, we present a radically new way of precisely measuring hyperfine shifts, and demonstrate its effectiveness in the case of the hyperfine shift of 4s_1/24s\_{1/2} and 4p_1/24p\_{1/2} in 207Pb53+^{207}\mathrm{Pb}^{53+}. It is based on the precise detection of dielectronic resonances that occur in electron-ion recombination at very low energy. This allows us to determine the hyperfine constant to around 0.6 meV accuracy which is on the order of 10%

    Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy

    Get PDF
    GaAs nanowires are grown by molecular beam epitaxy using a self-catalyzed, Ga-assisted growth technique. Position control is achieved by nano-patterning a SiO2 layer with arrays of holes with a hole diameter of 85 nm and a hole pitch varying between 200 nm and 2 \mum. Gallium droplets form preferentially at the etched holes acting as catalyst for the nanowire growth. The nanowires have hexagonal cross-sections with {110} side facets and crystallize predominantly in zincblende. The interdistance dependence of the nanowire growth rate indicates a change of the III/V ratio towards As-rich conditions for large hole distances inhibiting NW growth.Comment: 9 pages, 4 figure

    Resonant Auger spectroscopy at the L2,3 shake-up thresholds as a probe of electron correlation effects in nickel

    Full text link
    The excitation energy dependence of the three-hole satellites in the L3-M4,5M4,5 and L2-M4,5M4,5 Auger spectra of nickel metal has been measured using synchrotron radiation. The satellite behavior in the non-radiative emission spectra at the L3 and L2 thresholds is compared and the influence of the Coster-Kronig channel explored. The three-hole satellite intensity at the L3 Auger emission line reveals a peak structure at 5 eV above the L3 threshold attributed to resonant processes at the 2p53d9 shake-up threshold. This is discussed in connection with the 6-eV feature in the x-ray absorption spectrum.Comment: 8 pages, 4 figures; http://prb.aps.org/abstract/PRB/v58/i7/p3677_

    Unexpected selections of Plasmodium falciparum polymorphisms in previously treatment-naĂŻve areas after monthly presumptive administration of three different anti-malarial drugs in Liberia 1976-78.

    Get PDF
    BACKGROUND: To assess the effect on malaria prevalence, village specific monthly administrations of pyrimethamine, chlorproguanil, chloroquine or placebo were given to children in four previously treatment-naïve Liberian villages, 1976-78. Plasmodium falciparum in vivo resistance developed to pyrimethamine only. Selection of molecular markers of P. falciparum resistance after 2 years of treatment are reported. METHODS: Blood samples were collected from 191 study children in a survey in 1978. Polymorphisms in pfcrt, pfmdr1, pfdhfr, pfdhps, pfmrp1 and pfnhe1 genes were determined using PCR-based methods. RESULTS: Pfcrt 72-76 CVIET was found in one chloroquine village sample, all remaining samples had pfcrt CVMNK. Pfmdr1 N86 prevalence was 100%. A pfmdr1 T1069ACT→ACG synonymous polymorphism was found in 30% of chloroquine village samples and 3% of other samples (P = 0.008). Variations in pfnhe1 block I were found in all except the chloroquine treated village (P < 0.001). Resistance associated pfdhfr 108N prevalence was 2% in the pyrimethamine village compared to 45-65% elsewhere, including the placebo village (P = 0.001). CONCLUSIONS: Chloroquine treatment possibly resulted in the development of pfcrt 72-76 CVIET. Selection of pfmdr1 T1069ACG and a pfnhe1 block 1 genotypes indicates that chloroquine treatment exerted a selective pressure on P. falciparum. Pyrimethamine resistance associated pfdhfr 108N was present prior to the introduction of any drug. Decreased pfdhfr 108N frequency concurrent with development of pyrimethamine resistance suggests a non-pfdhfr polymorphisms mediated resistance mechanism

    Correction of non-linearity effects in detectors for electron spectroscopy

    Full text link
    Using photoemission intensities and a detection system employed by many groups in the electron spectroscopy community as an example, we have quantitatively characterized and corrected detector non-linearity effects over the full dynamic range of the system. Non-linearity effects are found to be important whenever measuring relative peak intensities accurately is important, even in the low-countrate regime. This includes, for example, performing quantitative analyses for surface contaminants or sample bulk stoichiometries, where the peak intensities involved can differ by one or two orders of magnitude, and thus could occupy a significant portion of the detector dynamic range. Two successful procedures for correcting non-linearity effects are presented. The first one yields directly the detector efficiency by measuring a flat-background reference intensity as a function of incident x-ray flux, while the second one determines the detector response from a least-squares analysis of broad-scan survey spectra at different incident x-ray fluxes. Although we have used one spectrometer and detection system as an example, these methodologies should be useful for many other cases.Comment: 13 pages, 12 figure

    Introducing Perennial Grain in Grain Crops Rotation: The Role of Rooting Pattern in Soil Quality Management

    Get PDF
    The use of the perennial grain intermediate wheatgrass (Thinopyrum intermedium(Host) Barkworth &amp; D.R. Dewey) may have the potential to sustain soil health and fertility through the development of an extensive root system. However, references are scarce to demonstrate its potential influence in a context of a limited perennial grain growth phase, integrated into annual grain crops succession. This study aims at determining how early a perennial crop rooting system differs from that of an annual crop through root development and root traits and microbial indicators. Our results indicate that the two-year-old intermediate wheatgrass promotes a denser and deeper rooting system with proportionally more root biomass and length deeper in the soil profile. From the first growing season, the perennial grain demonstrated a suite of root traits typical of a more resource-conservative strategy, and more belowground-oriented resource allocation. Soil fungal biomass indicators were enhanced. Arbuscular mycorrhizal fungi (AMF) indicators were notably found to be improved at 1 m depth during the second growing season. This study provides evidence that grain-based agriculture can benefit from the potential of deeper and long-lived root systems of intermediate wheatgrass to manage soils. The periodic use of a short-term perennial phase in the crop rotation has the potential to improve soil functioning in the long term

    Intramolecular vibronic dynamics in molecular solids: C60

    Get PDF
    Vibronic coupling in solid C60 has been investigated with a combination of resonant photoemission spectroscopy (RPES) and resonant inelastic x-ray scattering (RIXS). Excitation as a function of energy within the lowest unoccupied molecular orbital resonance yielded strong oscillations in intensity and dispersion in RPES, and a strong inelastic component in RIXS. Reconciling these two observations establishes that vibronic coupling in this core hole excitation leads to predominantly inelastic scattering and localization of the excited vibrations on the molecule on a femtosecond time scale. The coupling extends throughout the widths of the frontier valence bands.

    Effect of the GaAsP shell on optical properties of self-catalyzed GaAs nanowires grown on silicon

    Get PDF
    We realize growth of self-catalyzed core-shell GaAs/GaAsP nanowires (NWs) on Si substrates using molecular-beam epitaxy. Transmission electron microscopy (TEM) of single GaAs/GaAsP NWs confirms their high crystal quality and shows domination of the zinc-blende phase. This is further confirmed in optics of single NWs, studied using cw and time-resolved photoluminescence (PL). A detailed comparison with uncapped GaAs NWs emphasizes the effect of the GaAsP capping in suppressing the non-radiative surface states: significant PL enhancement in the core-shell structures exceeding 2000 times at 10K is observed; in uncapped NWs PL is quenched at 60K whereas single core-shell GaAs/GaAsP NWs exhibit bright emission even at room temperature. From analysis of the PL temperature dependence in both types of NW we are able to determine the main carrier escape mechanisms leading to the PL quench
    • 

    corecore