Using photoemission intensities and a detection system employed by many
groups in the electron spectroscopy community as an example, we have
quantitatively characterized and corrected detector non-linearity effects over
the full dynamic range of the system. Non-linearity effects are found to be
important whenever measuring relative peak intensities accurately is important,
even in the low-countrate regime. This includes, for example, performing
quantitative analyses for surface contaminants or sample bulk stoichiometries,
where the peak intensities involved can differ by one or two orders of
magnitude, and thus could occupy a significant portion of the detector dynamic
range. Two successful procedures for correcting non-linearity effects are
presented. The first one yields directly the detector efficiency by measuring a
flat-background reference intensity as a function of incident x-ray flux, while
the second one determines the detector response from a least-squares analysis
of broad-scan survey spectra at different incident x-ray fluxes. Although we
have used one spectrometer and detection system as an example, these
methodologies should be useful for many other cases.Comment: 13 pages, 12 figure