32 research outputs found

    Statistical investigation of climate change effects on the utilization of the sediment heat energy

    Get PDF
    Suvilahti, a suburb of the city of Vaasa in western Finland, was the first area to use seabed sediment heat as the main source of heating for a high number of houses. Moreover, in the same area, a unique land uplift effect is ongoing. The aim of this paper is to solve the challenges and find opportunities caused by global warming by utilizing seabed sediment energy as a renewable heat source. Measurement data of water and air temperature were analyzed, and correlations were established for the sediment temperature data using Statistical Analysis System (SAS) Enterprise Guide 7.1. software. The analysis and provisional forecast based on the autoregression integrated moving average (ARIMA) model revealed that air and water temperatures show incremental increases through time, and that sediment temperature has positive correlations with water temperature with a 2-month lag. Therefore, sediment heat energy is also expected to increase in the future. Factor analysis validations show that the data have a normal cluster and no particular outliers. This study concludes that sediment heat energy can be considered in prominent renewable production, transforming climate change into a useful solution, at least in summertime

    A preliminary test for using a borehole as cool storage

    Get PDF
    This paper describes a preliminary test for using a borehole as a cool storage. The testing was done using a dry borehole in Vaasa area. The cooling was done using a special trailer in period of 9 days after which the borehole was allowed to warm naturally up. Temperature data was collected both cooling and warming periods. The temperature of undisturbed ground had not reached the original bedrock temperature even after 12 days. The temperature data collected also indicate that one can store cool in a similar way as the heat around a borehole. This test did not cause any visible damage to bedrock that is important when making a cool storage.fi=vertaisarvioitu|en=peerReviewed

    Seasonal temperature variation in heat collection liquid used in renewable, carbon-free heat production from urban and rural water areas

    Get PDF
    A renewable energy source called sediment energy is based on heat collection with tubes similar to those used in ground energy and is installed inside a sediment layer under water body. In this paper, an investigation of temperature behaviour of heat carrier liquid is made during several years to evaluate utilization of sediment energy. This is done by evaluating temperature variations of heat carrier liquid and its correlation to air temperature. This increases advancement of knowledge how the temperature of the sediment recovers from the heat collection. The temperature variation of the liquid seems to correlate with the mean monthly air temperature. The selected methods clearly indicate that sediment energy seems to be yearly renewable because there is a clear correlation between air temperature and heat carrier liquid temperature.© Authors. This is an open access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)fi=vertaisarvioitu|en=peerReviewed

    Warming impacts on boreal fen CO2 exchange under wet and dry conditions

    Get PDF
    Abstract Northern peatlands form a major soil carbon (C) stock. With climate change, peatland C mineralization is expected to increase, which in turn would accelerate climate change. A particularity of peatlands is the importance of soil aeration, which regulates peatland functioning and likely modulates the responses to warming climate. Our aim is to assess the impacts of warming on a southern boreal and a sub-arctic sedge fen carbon dioxide (CO2) exchange under two plausible water table regimes: wet and moderately dry. We focused this study on minerotrophic treeless sedge fens, as they are common peatland types at boreal and (sub)arctic areas, which are expected to face the highest rates of climate warming. In addition, fens are expected to respond to environmental changes faster than the nutrient poor bogs. Our study confirmed that CO2 exchange is more strongly affected by drying than warming. Experimental water level draw-down (WLD) significantly increased gross photosynthesis and ecosystem respiration. Warming alone had insignificant impacts on the CO2 exchange components, but when combined with WLD it further increased ecosystem respiration. In the southern fen, CO2 uptake decreased due to WLD, which was amplified by warming, while at northern fen it remained stable. As a conclusion, our results suggest that a very small difference in the WLD may be decisive, whether the C sink of a fen decreases, or whether the system is able to adapt within its regime and maintain its functions. Moreover, the water table has a role in determining how much the increased temperature impacts the CO2 exchange. This article is protected by copyright. All rights reserved.Peer reviewe

    High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season

    Get PDF
    Background Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. Methods In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of three months (June-August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. Results The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms. The mean heterotrophic flux was 1244.7 ± SE 149.2 mg m-2h-1 and 663.8 ± SE 102.2 mg m-2h-1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 944 ± SE 99.7 mg m-2h-1 and 1962 ± SE 246 mg m-2h-1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m-2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. Conclusions The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage

    Thermal Behavior of an Asphalt Pavement in the Laboratory and in the Parking Lot

    No full text
    The urban, constructed areas are full of buildings and different kinds of pavements and have a noticeable lack of trees and flora. These areas are accumulating the heat from the Sun, people, vehicles, and constructions. One interesting heat collector is the asphalt pavement. How does the heat transfer to different layers under the pavement or does it? What are the temperatures under the pavement in Finland where the winter can be pretty hard? How can those temperatures be measured accurately? These are the main questions this paper gives the preliminary answers to. First the thermal behavior of asphalt and the layers beneath are researched in the laboratory and then the measurement field is bored and dug in the parking in the Western coast of Finland, 63°5′45′′ N. Distributed temperature sensing method was found to be a good choice for temperature measurements. Thermal behavior of pavement has been monitored in different layers and the preliminary results have been published here. The goal of this research is to assess the applicability of asphalt pavements for heat energy collection
    corecore