67 research outputs found

    OpenArch: An open-source package for determining the minimum-thickness of arches under seismic loads

    Get PDF
    Arches are elegant and efficient structural forms that can be used in a wide variety of applications, from bridges to extraterrestrial shielding structures. Oftentimes their design hinges around the identification of the minimum-thickness required to ensure their stability when subjected to gravity and lateral (inertial) loading. This work presents a MATLAB-based code called OpenArch developed within a procedural programming framework for the preliminary design and assessment of optimal arch forms of minimum thickness when subjected to combined self-weight and seismically induced loads. The code, which is based on limit thrust-line analysis can handle any classical or non-classical no-tension arch form and the results compare excellently with the few available analytical solutions

    Optimal arch forms under in‐plane seismic loading in different gravitational environments

    Get PDF
    This paper is motivated by the renewed interest in space exploration and the need to provide structurally sound and resource-efficient shielding solutions for valuable assets and future habitable modules. We present, implement and test a methodology for the preliminary design and assessment of optimal arch forms subjected to self-weight as well as seismically induced loads. The numerical framework, built around a limit thrust-line analysis, previously published by the authors, is summarized first. This is followed by a detailed account of the form-finding algorithm for arches of variable thickness. Special attention is placed on the physical feasibility of our assumptions and the justification of the engineering inputs adopted. The newly form-found arches achieve material efficiencies between 10% and 50% in comparison with their constant minimum-thickness circular or elliptical counterparts, depending on the relative intensity of the seismic action. The influence of the initial input geometry and the stabilising presence of additional shielding material against extreme radiation are also evaluated with emphasis on the effects of low-gravity conditions. Finally, a case study is presented and Discrete Element Models of constant and varying thickness arches (VTAs) are assessed under a set of representative ground-motions on a lunar setting. The significant over-conservatism of constant thickness arches (CTAs) is made manifest and potential improvements of the optimally found arch shape are highlighted. Although developed with extraterrestrial applications in mind, the results and methods we present herein are also applicable to terrestrial conditions when material efficiency is of utmost concern

    Phytoplankton functional groups in the Northern Humboldt Current Ecosystem (NHCE)

    Get PDF
    El Norte del ecosistema de la Corriente de Humboldt, localizado a lo largo del Sudeste del Océano Pacífico, frente a Perú, es considerado uno de los más productivos sistemas naturales en el mundo, siendo de gran relevancia el estudio del fitoplancton como base de la trama trófica marina. Tomando en cuenta las relaciones entre la superficie celular, biovolumen y máxima dimensión lineal de las células de las especies del fitoplancton, se encontraron 140 especies en el grupo funcional ‘R‘ (especies ruderales, adaptables a condiciones altas de mezcla); 133 especies en el grupo funcional ‘S’ (especies Stress-tolerantes, predominantes en condiciones oligotróficas y de alta luz) y 19 en el grupo funcional ‘C’ (especies colonizadoras, oportunistas, predominantes en condiciones mesotróficas y de alta luz). En el grupo funcional R destacaron las diatomeas elongadas, pennadas, dispuestas en cadenas; en el grupo funcional S se encontraron dinoflagelados, diatomeas centrales grandes y silicoflagelados; mientras que, en el grupo funcional C destacaron cocolitofóridos, algunos dinoflagelados mixotróficos y fitoflagelados. Los porcentajes de coincidencia entre la clasificación morfométrica de grupos funcionales del presente estudio y la clasificación ecológica, estuvieron entre 52 y 90%. Se propone el uso de estos grupos para evaluar las variaciones espacio-temporales del fitoplancton y su relación con las condiciones ambientales en el Norte del ecosistema de la Corriente de Humboldt, cuyos niveles de turbulencia son menores al de los fiordos chilenos.ABSTRACT: The Northern Humboldt Current ecosystem (NHCE), located in the southeastern Pacific off Peru, is one of the most productive natural systems worldwide. This area is of great relevance for the study of phytoplankton as the basis of the marine trophic web. Based on the relationships between the cell surface area, biovolume, and maximum linear dimension of the cells of the phytoplankton species, we found 140 species in the functional group ‘R’ (ruderal species, which are adaptable to high mixing conditions); 133 species in functional group ‘S’ (Stress-tolerant species, predominant in oligotrophic and high light conditions), and 19 species in functional group ‘C’ (colonizing, opportunistic species, predominant in mesotrophic and high light conditions). These three functional groups (FGs) are respectively formed by elongated, pennate, and chain-forming diatoms (group R); dinoflagellates, large central diatoms, and silicoflagellates (group S), and coccolithophores, some mixotrophic dinoflagellates, and phytoflagellates (group C). The percentages of coincidence between the morphometric classification of the FGs of this study and the ecological classification were between 52% and 90%. We propose the use of FGs to evaluate the spatio-temporal variations of phytoplankton and its relation with environmental conditions in the NHCE, whose turbulence levels are lower than those recorded in Chilean fjords

    Towards the simplification of MHC typing protocols: targeting classical MHC class II genes in a passerine, the pied flycatcher Ficedula hypoleuca

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major Histocompatibility Complex (MHC) has drawn the attention of evolutionary biologists due to its importance in crucial biological processes, such as sexual selection and immune response in jawed vertebrates. However, the characterization of classical MHC genes subjected to the effects of natural selection still remains elusive in many vertebrate groups. Here, we have tested the suitability of flanking intron sequences to guide the selective exploration of classical MHC genes driving the co-evolutionary dynamics between pathogens and their passerine (Aves, Order Passeriformes) hosts.</p> <p>Findings</p> <p>Intronic sequences flanking the usually polymorphic exon 2 were isolated from different species using primers sitting on conserved coding regions of MHC class II genes (β chain). Taking the pied flycatcher <it>Ficedula hypoleuca</it> as an example, we demonstrate that careful primer design can evade non-classical MHC gene and pseudogene amplification. At least four polymorphic and expressed loci were co-replicated using a single pair of primers in five non-related individuals (N = 28 alleles). The cross-amplification and preliminary inspection of similar MHC fragments in eight unrelated songbird taxa suggests that similar approaches can also be applied to other species.</p> <p>Conclusions</p> <p>Intron sequences flanking the usually polymorphic exon 2 may assist the specific investigation of classical MHC class II B genes in species characterized by extensive gene duplication and pseudogenization. Importantly, the evasion of non-classical MHC genes with a more specific function and non-functional pseudogenes may accelerate data collection and diminish lab costs. Comprehensive knowledge of gene structure, polymorphism and expression profiles may be useful not only for the selective examination of evolutionarily relevant genes but also to restrict chimera formation by minimizing the number of co-amplifying loci.</p

    On the NASA GEDI and ESA CCI biomass maps: aligning for uptake in the UNFCCC global stocktake

    Get PDF
    Earth Observation data are uniquely positioned to estimate forest aboveground biomass density (AGBD) in accordance with the United Nations Framework Convention on Climate Change (UNFCCC) principles of 'transparency, accuracy, completeness, consistency and comparability'. However, the use of space-based AGBD maps for national-level reporting to the UNFCCC is nearly non-existent as of 2023, the end of the first global stocktake (GST). We conduct an evidence-based comparison of AGBD estimates from the NASA Global Ecosystem Dynamics Investigation and ESA Climate Change Initiative, describing differences between the products and National Forest Inventories (NFIs), and suggesting how science teams must align efforts to inform the next GST. Between the products, in the tropics, the largest differences in estimated AGBD are primarily in the Congolese lowlands and east/southeast Asia. Where NFI data were acquired (Peru, Mexico, Lao PDR and 30 regions of Spain), both products show strong correlation to NFI-estimated AGBD, with no systematic deviations. The AGBD-richest stratum of these, the Peruvian Amazon, is accurately estimated in both. These results are remarkably promising, and to support the operational use of AGB map products for policy reporting, we describe targeted ways to align products with Intergovernmental Panel on Climate Change (IPCC) guidelines. We recommend moving towards consistent statistical terminology, and aligning on a rigorous framework for uncertainty estimation, supported by the provision of open-science codes for large-area assessments that comprehensively report uncertainty. Further, we suggest the provision of objective and open-source guidance to integrate NFIs with multiple AGBD products, aiming to enhance the precision of national estimates. Finally, we describe and encourage the release of user-friendly product documentation, with tools that produce AGBD estimates directly applicable to the IPCC guideline methodologies. With these steps, space agencies can convey a comparable, reliable and consistent message on global biomass estimates to have actionable policy impact

    Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

    Get PDF
    Background: Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI–TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR).Methods/Principal Findings: The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm.Conclusions/Significance: Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.This work received financial support from the Ministry of Science and Technology of Argentina [PICT 2011-0207 to AGS] and the National Scientific and Technical Research Council in Argentina (CONICET) [PIP 112 2011-010-0974 to AGS]. Work related to evaluation of biological samples was partially sponsored by the Pan-American Health Organization (PAHO) [Small Grants Program PAHO-TDR]; the Drugs and Neglected Diseases Initiative (DNDi, Geneva, Switzerland), Wellcome Trust (London, United Kingdom), SANOFI-AVENTIS (Buenos Aires, Argentina) and the National Council for Science and Technology in Mexico (CONACYT) [FONSEC 161405 to JMR]
    corecore