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Abstract
Earth Observation data are uniquely positioned to estimate forest aboveground biomass density
(AGBD) in accordance with the United Nations Framework Convention on Climate Change
(UNFCCC) principles of ‘transparency, accuracy, completeness, consistency and comparability’.
However, the use of space-based AGBD maps for national-level reporting to the UNFCCC is nearly
non-existent as of 2023, the end of the first global stocktake (GST). We conduct an evidence-based
comparison of AGBD estimates from the NASA Global Ecosystem Dynamics Investigation and
ESA Climate Change Initiative, describing differences between the products and National Forest
Inventories (NFIs), and suggesting how science teams must align efforts to inform the next GST.
Between the products, in the tropics, the largest differences in estimated AGBD are primarily in the
Congolese lowlands and east/southeast Asia. Where NFI data were acquired (Peru, Mexico, Lao
PDR and 30 regions of Spain), both products show strong correlation to NFI-estimated AGBD,
with no systematic deviations. The AGBD-richest stratum of these, the Peruvian Amazon, is
accurately estimated in both. These results are remarkably promising, and to support the
operational use of AGB map products for policy reporting, we describe targeted ways to align
products with Intergovernmental Panel on Climate Change (IPCC) guidelines. We recommend
moving towards consistent statistical terminology, and aligning on a rigorous framework for
uncertainty estimation, supported by the provision of open-science codes for large-area
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assessments that comprehensively report uncertainty. Further, we suggest the provision of
objective and open-source guidance to integrate NFIs with multiple AGBD products, aiming to
enhance the precision of national estimates. Finally, we describe and encourage the release of
user-friendly product documentation, with tools that produce AGBD estimates directly
applicable to the IPCC guideline methodologies. With these steps, space agencies can convey a
comparable, reliable and consistent message on global biomass estimates to have actionable
policy impact.

1. Introduction

The estimation of forest biomass is well recog-
nized as a crucial component in addressing cli-
mate change by scientists, policymakers, investors
and society at large. Earth observation (EO) has
shown potential to aid this effort; it has helped to
produce numerous map-based aboveground woody
live biomass density (AGBD) estimates, each pro-
duced using a variety of data acquired from space-
borne instruments and methods ranging from spatial
modeling to artificial intelligence (Rodriguez-Veiga
et al 2017), and distributed publicly on open-science
principles. Broadly, such maps have supported dec-
ades of research on carbon cycle and climate mod-
eling, biodiversity assessments, ecosystem manage-
ment and land-use planning (e.g. Ross et al 2021,
Harper et al 2023). Amongst the various space-
borne sensors used in AGBD estimation, NASA’s
Global Ecosystem Dynamics Investigation (GEDI)
was specifically optimized to retrieve vegetation ver-
tical structure, and launched to the International
Space Station in 2018 to fill knowledge and data gaps
in forest AGBD (Dubayah et al 2020). The upcom-
ing launches of ESA’s BIOMASS, the NASA-ISRO
Synthetic Aperture Radar (SAR), the Advanced Land
Observing Satellite-4 (ALOS-4), and a suite of other
sensors, will support regular global forest monitor-
ing to develop targeted emission mitigation strategies
(Quegan et al 2019, Ochiai et al 2023).

The rapidly advancing science of forest bio-
mass mapping is, however, challenged when map-
based AGBD estimates and their underlying meth-
ods are inter-compared. Several studies have high-
lighted global, continental and local-scale differences
in estimates (e.g. Mitchard et al 2013, Avitabile et al
2016) and systematic deviations from ground ref-
erence data (e.g. Araza et al 2022), although inde-
pendent validation remains a challenge due to the
paucity of globally-distributed samples of in situ data
(Duncanson et al 2019). Large differences exist not
only between themapAGBDestimates, but also in the
analytical frameworks used to estimate uncertainties,
their underlying scope, definitions, assumptions and
level of transparency. The lack of consistency amongst
AGBD maps is a cause of confusion, and hinders
objective comparisons and uptake ofmaps for policy-
level reporting in line with the Intergovernmental

Panel on Climate Change (IPCC) Guidelines for
National Greenhouse Gas Inventories (IPCC 2006,
2019). For example, a compilation of 75 submis-
sions to the United Nations Framework Convention
on Climate Change (UNFCCC) reveals that not only
do a mere 5% of countries use such AGBD maps,
they use decade-old versions (i.e. Saatchi et al 2011
and (Baccini et al 2012)) only to compare estim-
ates or support national-level decision-making (Melo
et al 2023), rather than to directly and independently
estimate AGBD.

To assess the world’s collective progress towards
emissions reductions, the first Global Stocktake
(GST) under the Paris Agreement of the UNFCCC
is underway (UNFCCC 2023a, 2023b), with updates
expected at 5 year intervals. The aggregation of
national greenhouse gas inventories (NGHGIs),
which all country-Parties to the Paris Agreement
will submit biennially from 2024 forward on, will
be the main source of information in the collective
assessment of the next GST cycles. Countries should
facilitate ‘transparency, accuracy, completeness, con-
sistency and comparability’ of reported statistics,
particularly from time-series (IPCC 2006, 2019).
Although satellite data are well-positioned to aid
policy under these principles, if the many approaches
toAGBDestimation are not harmonized,map produ-
cers risk delivering discrepant estimates and ambigu-
ous information to the public. Particularly as maps
from the New Space commercial sector (Ochiai et al
2023) enter the market, any conflicting estimates of
forest AGBD will be detrimental to their use for cli-
mate change mitigation. Without harmonization, it
will be impossible to reliably quantify the progress of
mitigation actions or the effective role of forests in
achieving the goals of the Paris Agreement.

The operational uses of space-based AGBD maps
for national assessments are few or entirely non-
existent (GFOI 2020, Melo et al 2023). This funda-
mental data-policy gap has been a catalyst for action
amongst scientists in internationally coordinated
teams, such as the Committee on Earth Observing
Satellites (CEOS), towards collaboration on harmon-
izing the generation and validation of published
AGBD maps (Herold et al 2019, Ochiai et al 2023). It
has facilitated an open exchange of data and inform-
ation, resulting in the publication of key guidance.
For example, the CEOS Biomass Validation Protocol
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(Duncanson et al 2021) recommends approaches for
validating AGBDmap estimates with in situ reference
data, accounting for uncertainties, forest definitions
and plot-pixel size mismatches. Labriére et al (2023)
calls for the design and maintenance of a permanent
in situ ‘forest biomass reference measurement’ system
to independently validate maps and estimate their
uncertainty. With regard to model-based inference
from AGBD maps, McRoberts et al (2022) demon-
strates a statistically rigorous method to account for
model prediction variability and residual variability,
and their contribution to overall standard error (SE).
Finally, on practical policy-relevant applications, Næ
sset et al (2020) and Málaga et al (2022) demon-
strate the use of global AGBD maps to increase the
precision of sub-national estimates. Leading on from
this research, an important contribution to the CEOS
Biomass Harmonization activity (NASA 2021) is the
inter-comparison of current published AGBD maps,
and transparent communication of the differences
both between the maps, and between the maps and
ground-reference data.

In this article, we report on the inter-comparison
for two of the newest (as of 2023) released space-based
AGBD maps—NASA’s GEDI-derived AGBD product
(Healey et al 2022) and the ESA’s Climate Change
Initiative (CCI) 2020 version 4 AGBD product
(Santoro et al 2023a). The research objectives are (1)
to identify geographical regions over which the maps
agree and disagree, (2) compare their sub-national
estimates with those of National Forest Inventories
(NFIs) for a selection of countries, (3) comparat-
ively assess the uncertainty estimation frameworks
and limitations (if any) in the products’ underlying
models, and (4) discuss if and how the maps, and
product documentation, can be improved to align
with policy guidance. In doing so, we address whether
the maps currently provide sufficient information to
inform the GST. We conclude with a concrete set
of actions that can be taken by the science-teams to
improve the dissemination of AGBDmaps for policy.

2. Materials andmethods

The methodological approach involves the inter-
comparison of AGBD estimates frommaps, and com-
parisons to NFI estimates (figure 1), upon which we
provide recommendations for aligning the products
with policy guidance.

2.1. Inter-comparison of AGBDmaps
The two products compared in this study, i.e. GEDI
and CCI estimates of AGBD, are produced independ-
ently using different approaches. Fundamentally, the
GEDI approach is based on regression models and
in situ reference data, and the CCI on both regression
and simplified semi-empirical models, and various
national/sub-national reports of AGBD (see table 1).

Below, we state some of the common challenges rel-
evant to AGBD estimation.

1. The GEDI products are estimates derived at the
footprint-level fromwaveform light detection and
ranging (LiDAR), covering tropical and temper-
ate forests between 51.6◦ latitudeN& S, which are
used to extract information on canopy height and
3D structure (Dubayah et al 2020). GEDI relative
height (RH) metrics have shown high consistency
with forest structure (e.g. Adrah et al 2021, Liu
et al 2021, Li et al 2023), although the over/under-
estimation of ground elevation over seasonally
flooded waters, or in complex topography, can
hinder the extraction of these metrics (Urbazaev
et al 2022, Bruening et al 2023). The GEDI L4B
version 2, which is an AGBD estimate over 1 km×

1 km grid cells, has gaps owing to limited spatial
coverage up until 2021.

2. The CCI product is at a wall-to-wall global scale,
produced using a variety of sensors, particularly
imaging sensors of SAR. It relies primarily on
the inversion of the semi-empirical water cloud
model (WCM) (Askne et al 1997), relating AGBD
(as a covariate) to SAR backscatter (as a response
variable) (Santoro et al 2023a). Backscatter is
known to be sensitive to surface moisture and
prone to signal attenuation (Joshi et al 2017). To
prevent the prediction of unrealistic AGBDvalues,
multiple steps are taken; these involve (1) weight-
ing stacks ofmulti-temporal SAR images (Santoro
et al 2021), (2) constraining model parameters to
a theoretical model of signal attenuation, num-
ber of observations and topography (Santoro et al
2021), and (3) constraining spaceborne-LiDAR
height estimates, and AGBD estimates, tomaxima
based on height distributions and various literat-
ure across global regions (Santoro et al 2022).

Before inter-comparing the products, a cla-
rification of the terminology used for products’
uncertainties (i.e. their precision and systematic
errors) is warranted; precision is the ‘variability
around an estimated value’ (i.e. the spread of its con-
fidence interval (CI)), systematic error is the ‘degree
to which the estimated value deviates from the true
population value’, and negligible or non-existent sys-
tematic errors are an indication of accurate estimates
Duncanson et al (2021), ch 4.

Crucially, the two products use different ana-
lytical frameworks to describe and estimate preci-
sion (table 1). As a product based solely on discrete
samples, hybrid inference is used to estimate the SE of
AGBD in each 1 km× 1 km grid cell of the GEDI L4B
product, and over larger arbitrary-sized regions. The
hybrid estimate combines (1) sampling variability
(i.e. the variability among the GEDI tracks, each con-
sisting of shots with predicted AGBD) and (2) model
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Figure 1.Methodological workflow for the comparison of NASA’s GEDI-derived and ESA’s Climate Change Initiative (CCI) 2020
version 4 aboveground biomass density (AGBD) products.

parameter variability (i.e. the uncertainty in the para-
meter estimates used to predict AGBD in the 25 m
footprint-level L4A models). Residuals of the mod-
els (i.e. differences between observed and predicted
AGBD) are comparatively negligible (relative to the
sampling and model components) when aggregated
over 1 km or larger cells/areas, and hence are not
included in variance estimates (Patterson et al 2019,
Dubayah et al 2022b). In contrast, the CCI product,
on account of the suite of input data, is described
by a number of regression and semi-empirical mod-
els that sequentially include estimates, whose errors
arise from preceding models and propagate to sub-
sequent models (Santoro et al 2021, 2023b). The
variance of final AGBD predictions incorporates (1)
the variance in all models’ parameter estimates and
in some covariates and response variables, and (2)
model residual errors. However, the challenge in a
comprehensive one-to-one comparison with GEDI
products arises from differing statistical terminology
with a lack of explicitly reported model results. The
sampling variance, i.e. the variance associated with
national/sub-national AGBD estimates in the various
reports contributing to the compiled reference data-
set (see table 1), is not rigorously assessed, primarily
due differences in reporting protocols and incomplete
information in the source documents. Hence, overall,
the same components of variance in the final estim-
ated AGBD, as those of the GEDI product, are not
captured in the CCI product.

The above-mentioned differences imply that the
products’ reported precisions are not directly com-
parable. At the very best, the products can be com-
pared to in situ data and the overlap of their pre-
diction CIs, insofar as they are rigorously estimated
and reported, can be investigated. To avoid erroneous
inference in this study, the CCI product is treated as
point estimates at pixel-level with unknown CIs, and
the need for aligned analytical frameworks discussed
in section 4.

For the purpose of map inter-comparison, the
WWF Terrestrial Ecoregions of the World (TEOW),
which defines lands ‘containing distinct assemblages
of natural communities and species’ (Olson et al
2001), is used to delineate the 688 ecoregions grouped
in 13 biomes across the GEDI range of observation.
For these ecoregions, the CCI and GEDI L4B product
(i.e. the 1 km gridded hybrid estimate), with GEDI’s
reported precision, are compared as follows:

1. At the ecoregion-level, the mean estimated AGBD
from each product is compared to identify if,
where, and by how much the products differ.
The values are also aggregated by continent and
TEOW biomes (each containing a variety of eco-
regions), to test whether systematic differences (if
any) are driven by geographical location or cli-
mate zones.

2. At the 1 km grid level, the 95% CI (i.e.
±1.96× SE) for each cell is estimated in the GEDI
product to test if the mean CCI AGBD is con-
tained within its range. Then, for each ecore-
gion, the fraction of pixels where this difference
is non-significant, i.e. CCI falls within the GEDI
95% CI, is recorded. This exercise is not a valida-
tion of either product and the assumptions made
here are important to note - (1) for GEDI, the
hybrid estimator of mean AGBD and variance is
unbiased (Patterson et al 2019), and violations
of the assumptions of the estimator can be iden-
tified by systematic deviations to ground-truth
data (Dubayah et al 2022b), and (2) for CCI, we
assume the estimator of the mean is unbiased,
until the contrary is proven with ground-truth
data.

Neither of the two approaches informs on
products’ accuracies. The first reveals if, by how
much, and where the products differ most. The
second reveals if the AGBD estimates reported in
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Table 1. Summary of the NASA Global Ecosystem Dynamics Investigation (GEDI) and ESA Climate Change Initiative (CCI) 2020
Biomass map products. Product Algorithm Theoretical Basis Documents are available at Healey et al (2022) and Santoro et al (2023a).

GEDI hybrid product CCI 2020 version 4

Input type LiDAR LiDAR and SAR

Mission GEDI ALOS-2, Sentinel-1, ICESat and ICESat-2

Years 2019–2021 2020

Area or pixel size Arbitrary or gridded (e.g. 1 km× 1 km) ∼100 m× 100 m at equator

Domain ±∼51.6◦ lat Global

Source of AGBD reference data Compilation of globally distributed
in situ plots with coincident airborne
LiDAR (Duncanson et al 2022)

National/sub-national AGBD estimates,
acquired from published NFI reports or
FAO Forest Resource Assessments (FAO
2020).

Method

• First, simulated GEDI waveforms are
used to relate relative height (RH)
metrics and the training AGBD
estimates in 13 allometric models
across broad global strata; four plant
functional types (PFTs) and six
geographic regions (Kellner et al 2023).

• Second, the models are applied to
predict AGBD from GEDI RH metrics
at 25 m footprint-level in regions with
different combinations of the global
strata, producing the L4A product
(Dubayah et al 2022a). AGBD training
data is not used in this step.

• Third, mean AGBD and variance is
estimated from the L4A product, over
either arbitrary irregularly-shaped
regions (e.g. countries) or grid cells
(e.g. the 1 km L4B product) in the
GEDI gridded AGBD product
(Dubayah et al 2022b).

• First, spaceborne LiDAR data are used
to relate mean canopy height and dens-
itymetrics to reference AGBD estimates
(compiled from the various reports) in
two allometric models for each of 20
broad global strata.

• Second, only the parameters estimated
in the allometric models are used to
formulate a semi-empirical water cloud
model (WCM), relating SAR backscat-
ter (response variable) to AGBD and
vegetation- and ground-components of
scattering (as covariates) over the global
strata. AGBD training data is not used
in this step.

• Third, the WCM is inverted to estim-
ate AGBD for each of N SAR images
in a year, which are linearly weighted
to obtain a single AGBD estimate. The
procedure is applied separately to C-
and L-band scenes, with outputs lin-
early weighted to derive a final AGBD
estimate.

Data masks Urban areas, open water-bodies and
vegetation phenology from a set of
external land cover data sources.

Cropland, urban areas, bare soil,
permanent snow and ice, and water
bodies from a set of external land cover
data sources.

Precision of estimated AGBD

The standard error (SE) is reported per
arbitrary region or per grid cell.
Estimation is based on statistical
sampling theory; the algorithm uses
hybrid inference accounting for model
parameter variability (i.e. in the
covariance of the field-to-LiDAR L4A
models) and sampling variability (e.g. the
variation of AGBD means in GEDI
tracks). Model residual errors are
considered comparatively negligible at
scales of 1 km grid-cells or larger
(Patterson et al 2019).

The standard deviation (SD) is reported
per 100 m pixel, or spatially aggregated to
coarser resolutions. Estimation is based
on the variance in numerous inputs to
the many sequential regression or
semi-empirical models in the algorithm.
Specifically, the variance in model
parameters and covariates, and residual
errors, are accounted for. The variance in
input AGBD training values from the
public reports, however, is not accounted
for Santoro et al (2023b).

one have CIs that contain the AGBD estimates of the
other; areas with very precise GEDI hybrid estim-
ates (narrow CIs), but large differences between the
maps, are likely to most require independent ref-
erence data to assess accuracy. Further, areas with

imprecise estimates (wide CIs) and large differences
between the maps are likely to most benefit from ref-
erence plots to improve model calibration. Statistical
inference for the above is based on generalized linear
models (GLMs).
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Table 2. Summary of the national forest inventory (NFI) data analyzed. The sample size indicates the number of plots/sub-plots visited
on the field, based on each country’s sampling design. The designs, and the equations of the statistical estimators, are detailed in
supplementary information, section 2.

Country Sample size NFI cycle (years)
No. of

forest strata Sampling design
Statistical
estimator

Mexico 9955 3rd cycle (2015 to
2019)

11 Systematic grids of
5× 5 km for
temperate/tropical forests,
10× 10 km for semi-arid,
and 20× 20 km for arid
areas, with 1-ha plots
consisting of four sub-plots
of∼11 m radius
(CONAFOR 2017)

Simple expansion
estimator

Peru 358 Ongoing (2011 to
date)

5 Non-aligned systematic
sampling, with plots
located randomly within
grid-cells of varying sizes
(SERFOR 2019)

Nationally-
defined
estimators

30 Spanish
regions/ provinces

39 534 4th cycle (2008 to
2019)

2 Systematic 1 km grid, with
sample units of four
circular concentric plots of
radius 5, 10, 15, and 25 m
(Álvarez-González et al
2014)

Simple expansion
estimator

Lao PDR 1394 secondary
sampling units
(SSUs)

3rd cycle (2019) 5 Two-stage stratified
random sampling; primary
sampling units (PSUs) were
3 km wide squares, and 4
circular plots (SSUs) of
20 m radius were chosen
within selected PSUs (DOF
2019)

Two-stage
estimator for
unequal areas of
strata within PSUs

2.2. Comparisons with NFIs
Across four countries—Mexico, Peru, Lao People’s
Democratic Republic (Lao PDR) and Spain—NFIs
were compiled to compare against the AGBD map
estimates (table 2). The developing countries, where
reporting to UNFCCC is infrequent or incomplete
(Grassi et al 2022, Melo et al 2023), could benefit
from regular biomass assessments while transition-
ing to more stringent requirements of the Paris
Agreement (UNFCCC 2019). Spain was chosen for
two reasons: (1) Spain’s NFI covers diverse ecosys-
tems from Atlantic forests and fast-growing planta-
tions in the North, to the Pyrenees mountains and
sparse vegetation in Central Spain and the Canary
Islands, and (2) it is a country where there are few
differences between the CCI and GEDI estimates
of AGBD, and where an advanced, systematically-
designed, and dense NFI plot network allows sub-
national comparisons. These exercises serve only as
a means to comparatively assess the performance
of products; the use of NFI reports to calibrate the
CCI models (see table 1), although without plot-level

data, precludes independent product validation with
NFIs.

Comparisons to NFIs follow the CEOS Biomass
Validation Protocol (Duncanson et al 2021), wherein
the mean, SE and 95% CI of AGBD are estim-
ated over each nationally-defined forest stratum, with
forest/non-forest masks. The estimates are compared
to the mean estimated CCI AGBD or GEDI hybrid
AGBD (i.e. a single AGBD and variance estimate
for each arbitrary-sized forest stratum). Since GEDI’s
hybrid inference framework provides the precision of
AGBD estimates, deviations from reference data can
be assessed in a fully probabilistic manner. The CCI
product does not have a comparable framework for
large-area assessments, and only the mean stratum-
wise AGBD estimate is examined.

Statistical inference is based on Fay–Herriot
small area estimation (FH-SAE) models (Fay III
and Herriot 1979, Rao and Molina 2015). FH-
SAE models account for sampling error in the
response variable, the stratum population estimates,
and infer the relationships between the true (but
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unknown) population means and model covariates.
Here, ‘sampling error’ refers to random variation
in the NFI estimates due to finite within-stratum
samples, and for the map-products, finite AGBD
training data. Accounting for such variation allows
inference on underlying systematic deviations, while
filtering random deviations occurring simply due to
finite sampling. Specifically, we assume

ŷ= y+ δ, (1)

where ŷ is the given stratum population estimate, y
is the unknown expected value of this estimate, and
δ is the sampling error. Error δ is assumed to have
zero mean and known variance, where the variances
are inherited from the associated product- or NFI-
estimated AGBD (note, CCI’s contribution to δ is
omitted by necessity). The difference in the product
and NFI estimates is set to ŷ, and y is the expected
value of this difference upon infinite re-sampling. We
further assume the regression model

y= α+ xβ+ ϵ, (2)

where x is a model covariate,α, β are regression coef-
ficients, and ϵ is model prediction error, giving the
remaining variation between the unknown expected
value, y, and the regression line. We can also entirely
omit covariate effect xβ, leaving only the intercept
α and model prediction error, creating a null model
where α represents the expected difference in estim-
ates across all forest strata (supplementary informa-
tion, section 1). Code for the FH-SAEmodels is avail-
able at Hunka et al (2023).

The estimation of mean AGBD and associated
variance from NFIs (inputs to the FH-SAE mod-
els) required different approaches in the four coun-
tries. For Peru, estimates were provided directly by
the Servicio Nacional Forestal y de Fauna Silvestre
(SERFOR 2023) for five strata from the Amazonian
lowlands to coastal areas. For the other countries,
estimators were developed taking into consideration
their NFI sample designs. Plot/sub-plot AGBD estim-
ates were acquired in Mexico and Spain, where one
can assume equal probability systematic sampling
designs, and use simple expansion estimators (sup-
plementary information, section 2a). In the Lao PDR,
tree-level information and a land strata map were
provided by the Department of Forestry (DOF 2019).
The mean AGBD and variance estimates required
consideration of two-stage sampling accounting for
the occurrence of various forest types (e.g. mixed
broadleaves, conifers, dry deciduous forests etc) in
each map-delineated stratum. A two-stage estim-
ator of Lohr (2010), equations (5.26) and (5.28)
was applied (supplementary information, section
2b). Hence, stratum-wise mean AGBD and variance
are not to be compared with nationally-reported
forest-type estimates in the Lao PDR.

3. Results

3.1. Inter-comparison of CCI and GEDI AGBD
Globally, averaged over ecoregions, the differences
in estimated means of AGBD from the CCI and
GEDI products range largely between −50 and
+25 Mg ha−1 (the 10th to 90th percentile) and show
a geographic pattern (figure 2(a)); they are largest
in the tropical-subtropical moist broadleaf biomes,
where CCI predicts greater AGBD than the GEDI
product, and in tropical-subtropical conifers, where
CCI predicts less than GEDI. By continent, system-
atic and significant differences are found, e.g. the
CCI product is found to systematically predict more
AGBD in nearly all biomes in South America (GLM,
p < 0.05, supplementary information, section 3).
In contrast, large parts of east Asia (e.g. southern
China) and southeast Asia show systematically less
AGBD across biomes including temperate and trop-
ical forests, in the CCI product (GLM, p< 0.05).

Despite the differences in the products across the
tropical belt, the CCI product’s estimates fall within
the reported 95% CI of GEDI’s hybrid estimates
across many tropical ecoregions. This is true in the
tropics of South America and Southeast Asia, where
in some ecoregions up to 50% of cells have an overlap
of AGBD estimates (figure 2(b)). In contrast, AGBD
differences over the Congolese moist broadleaves in
Africa are large, GEDI 95% CIs are relatively nar-
row, and the estimates overlap in only∼20% of cells.
Disagreements are also observed in temperate bio-
mes of South America and Indochina (i.e. the contin-
ental region of southeast Asia), highlighting partic-
ularly mismatched ecoregions. Finally, the low frac-
tion of overlap of CCI estimates with GEDI 95% CIs
in the African woodlands/savanna/grasslands, central
Asia and northern Australia are noted, although these
areas generally have low absolute differences in estim-
ated AGBD (∼20Mg ha−1) between the two products
(figure 2(a)).

3.2. Comparison with NFI estimates
Unlike the product inter-comparison, comparisons
of map-estimated and NFI-estimated AGBD provide
a basis to assess the relative performance of the
products (note, since stratum-wise variance in CCI
estimates are omitted, its results must be interpreted
with caution). Overall, the relation between stratum-
wise mean estimated AGBD of the maps and NFIs
is found to be strong for both products (figure 3);
the trend from high to low AGBD estimates is largely
captured across all strata in the four countries com-
bined, with no significant under- or over-prediction
in either product (p > 0.05, null FH-SAE models
(1) and (3), table 3). In over half the forest strata
(47 of 80), either one or both products are accurate,
i.e. they overlap the 95% CIs of NFI-estimated AGBD
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Figure 2. (a) Difference in estimated aboveground biomass density (AGBD) between ESA CCI and NASA GEDI, averaged across
WWF Terrestrial Ecoregions of the World (TEOW). Histograms show distribution of differences (in Mg/ha) in 1 km× 1 km grid
cells per continent. Significant differences found in generalized linear models (GLMs) are indicated with ∗p< 0.05. (b) The
fraction of 1 km grid cells where the CCI estimate falls within the GEDI 95% confidence interval (CI), in each ecoregion.
Histograms show distribution of GEDI standard errors (as percentage of mean estimated AGBD) in 1 km grid cells in selected
ecoregions. For visualization purposes, desert ecoregions are greyed-out. No external forest/non-forest masks are used, other than
those inherent in the products (see table 1).

(figure 4). Note, this fraction may have been larger
if the 95% CIs of estimated AGBD were assessed for
CCI. In the Peruvian Amazon, which is the AGBD-
richest stratum with largest area, both products per-
form particularly well. Stratum-specific deviations,
however, remain problematic for operational use of
the products for national reporting. In the following,
we examine their possible causes more closely.

3.2.1. Estimates in mountainous forest strata
Over mountains (e.g. mesophytic and conifer forests
of Mexico, and highlands in Peru and Lao PDR),
AGBD is over-predicted in the GEDI hybrid product.
Topographic slope (here, the within-stratum distri-
bution of Shuttle Radar TopographyMission (SRTM,
averaged to 1 km) slopes (NASA 2013)) was tested
as a covariate to explain the differences in stratum-
wise mean GEDI and NFI AGBD estimates. FH-SAE
models reveal that the 90th percentile of slope distri-
bution in each stratum can largely explain these dif-
ferences, while filtering sampling error (p < 0.01 on
β̂-slope, FH-SAE model (2), table 3). This observa-
tion is a subject of ongoing research (e.g. Bruening

et al 2023); signal processing errors caused by multi-
modal LiDAR waveforms over complex terrain, or
mis-identification of waveform noise as ground/can-
opy signal, can cause underestimation of ground elev-
ation and/or overestimation of canopy height. This
can lead to high values of RH metrics (e.g. RH98 in
Mexico, figure 5(a), that in turn result in an over-
estimation of L4A 25-m footprint AGBD and the sub-
sequent over-estimation in the GEDI hybrid product.
A significant (p<0.01 on β̂-slope, FH-SAE model (4),
table 3) influence of topographic slope is also noted
when relating the CCI to NFI estimates. However,
constraining spaceborne LiDAR height metrics to
maxima in the CCI algorithm challenges conclusive
interpretations of the FH-SAE model results.

3.2.2. Limitations of the underlying models
To further understand the source of deviations from
NFIs, the training data and global strata underpin-
ning product estimates were examined (table 1).
An example for GEDI is demonstrated; RH metrics
(i.e. RH98 and RH50) in the Peruvian highlands
are generally lower than those used in training the
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Figure 3. Stratum-wise differences in NFI-estimated and product-estimated aboveground biomass density (AGBD) in Mexico,
Peru, Lao PDR and 30 regions/provinces of Spain (Canary Islands are shown in lower right). Strata discussed in section 3 are
outlined in red (with 0.3–0.5◦ distance buffer). Regions with forests for which NFI data were unavailable are marked-out with
lines.

L4A models (figure 5(b)), suggesting that the lat-
ter may not be representative of highland forests.
The broad strata of plant functional types (PFTs)
in the L4A models label Peruvian mountainous
forests as evergreen broadleaf trees (EBTs), imply-
ing that the same model is applied in the high-
lands as for the moist Amazonian basin. Estimated
model parameters evidently capture the allometry

better in AGBD-rich lowlands than in the compar-
atively lower-AGBD highlands. A problem is also
observed in Stratum D in the Lao PDR, domin-
ated by mixed deciduous forests (figure 5(c)), over
which GEDI models for EBT are fitted rather than
deciduous broadleaf trees. Here, the use of national
delineations, rather than broad global strata, could
have resulted in more accurate AGBD estimates.
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Table 3. Results of FH-SAE models (equation (2)) relating stratum-wise product- and NFI-estimated AGBD. The nullmodels have a
single response variable equal to the difference of the estimates, and no covariate effects. R̂2 values can be interpreted as the fraction of
variation in this difference, omitting sampling error, explained by Slope90p (i.e. the 90th percentile of SRTM slopes mapped at a 1 km).
Parameter σ̂2 is the estimated variance of the model prediction error and SE is the standard error the coefficient estimate.

FH-SAE Model Coefficient Estimate SE t-value p-value σ̂2 R̂2

(1) GEDI− NFI∼ null α̂ (Intercept) 0.36 5.81 0.06 0.95 396.77 NA

(2) GEDI− NFI∼ Slope90p α̂ (Intercept) −48.54 9.39 −5.17 2.00 20.28 0.95

β̂ (slope) 3.15 0.52 6.07 4.34×10−08

(3) CCI− NFI∼ null α̂ (Intercept) 9.33 5.2 1.79 0.08 247.27 NA

(4) CCI− NFI∼ Slope90p α̂ (Intercept) −23.36 10.02 −2.33 1.98 67.55 0.73

β̂ (slope) 2.34 0.57 4.09 1.06×10−04

Figure 4. A comparison of aboveground biomass density (AGBD) estimated in National Forest Inventories (NFIs), and in ESA’s
CCI 2020 and NASA’s GEDI hybrid product, over strata in Mexico, Peru, Lao PDR and 30 provinces/regions of Spain (broadleaves
and conifers individually). Error bars denote the 95% confidence interval (CI) of estimated AGBD. The CCI values are reported as
point estimates without CIs.

Generally, however, finer strata delineations need to
be backed by ecologically-diverse and geographically-
representative training data, which are currently
scarce in many global regions (Duncanson et al
2019, Labriére et al 2023). Regional-level discrepan-
cies remain a fundamental challenge for global AGBD
products; the examples above support the need for
local calibration before committing to their opera-
tional use for policy (McRoberts et al 2019).

The provinces of Spain display strong relations
between both map-based and NFI-based estimates
of AGBD; systematic deviations are negligible (p >

0.05), and the overlap with NFI CIs indicates poten-
tial for the operational use of the maps in national-
level accounting. This is particularly true for GEDI,
where the mean estimated stratum-wise difference is

∼12 Mg ha−1, and largest in either the fragmented,
vegetation-sparse or mountainous forests. The lack
of training data in the GEDI L4A models in planta-
tion forests (Duncanson et al 2022)may explain some
of these minor discrepancies. For the CCI product,
the extent of Spain was classified as a single stratum
for the construction of allometric models (Santoro
et al 2023a), whereby minor differences to NFI estim-
ates could arise from constraining AGBD to a single
maximum value across varying ecological conditions
from north to south of the country. The largest
over-estimates are inmountainous conifers of Basque
Country (Guipuzkoa, Bizkaia and Alava; figure 4(e),
whichmay be driven by the activemanagement (rota-
tional thinnings but not clear-cuts) of eucalyptus and
pines over short temporal periods. Nevertheless, like
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Figure 5. Kernel density estimates of GEDI Relative Height metrics (RH98 and RH50) used in the training of the GEDI L4A
models, and of the metrics typically observed in (a) Mexican mesophytic forests, (b) Peruvian highlands, and (c) Lao stratum D
(dominated by mountainous mixed deciduous forests). Data quartiles are shown within the distributions (median= light blue,
range= red). Dominant plant functional types (PFTs) used in the GEDI L4A models are deciduous broadleaf trees (DBTs) or
evergreen broadleaf trees (EBTs), indicated in plot titles.

the GEDI product, mean stratum-wise differences
from the NFI estimates across the country are small
(∼22 Mg ha−1).

4. Discussion

The comparisons of the NASA GEDI and ESA CCI
global estimates of AGBD to each other and to NFI
data reveal promising results, albeit with the need
to improve regional-level estimates and narrow the
science-policy gap. The optimistic outlook pertains to
the following observations -

• At the ecoregion level, large differences in estimated
AGBDmeans between the two products are restric-
ted to a few regions globally. For example, only
∼13% ecoregions show an absolute AGBD differ-
ence >50 Mg ha−1. The most concerning of these
(in terms of the differences in mean AGBD and the
least overlap of estimated CIs) in the tropical-belt
are the Congolese lowlands, likely due to the lack
of reference data in these forests.

• The statistical differences between mean AGBD
estimated in the products and NFIs show no sys-
tematic deviation in the four countries examined.
This is an important finding; it suggests that an
increase in the precision of the AGBD estimates, as
the products are improved in subsequent releases,
may potentially enable accurate (i.e. without large
systematic errors) national-level assessments.

• Some limitations in the predictivemodels, underly-
ing data and uncertainty estimates of the products
are observed, and subsequent product iterations
may be able to address these and provide real-
istic opportunities to improve space-based AGBD
estimation.

The above outlook should not overshadow the
need to improve regional-level estimation of AGBD,

particularly since stratum-specific deviations from
NFI estimates are often large. Here, the distinction
between statistical significance and operational sig-
nificance must be stressed, i.e. even if the differ-
ences between product and NFI estimates are not
statistically significantly different (in the four coun-
tries examined), they may be so large as to render
them operationally significantly different. Where the
differences in the two product AGBD estimates are
large, where stratum-specific deviations toNFI estim-
ates are significant, or in regions of the world where
NFI data were unavailable for this study, the val-
idation and calibration of estimates with independ-
ent reference data remains paramount to their oper-
ational use for UNFCCC reporting. Further, the use
of NFIs in this study provide a basis to comparat-
ively evaluate the regional-level performance of the
global maps. However, since national/sub-national
NFI reports were used in CCI’s allometric mod-
els (table 1), albeit without the underlying in situ
data, this exercise is inapt to replace an independ-
ent validation of the map. The caveat in our ana-
lysis is that one can compare the NFI-based and
product AGBD estimates only insofar as the preci-
sion reported by the map producers allows. While it
remains to be tested, not accounting for the variance
in AGBD training datasets in the CCI method may
have produced erroneously high precision (i.e. nar-
row prediction CIs) (McRoberts et al 2022), and
hence CCI’s AGBD predictions are treated simply as
point estimates. Importantly, given the dissimilarity
in the uncertainty estimation frameworks of the two
AGBD maps, it is currently impossible to conclude
whether both products truly capture the variance of
estimated AGBD, and hence, whether they can be
fused to a single map of predicted AGBD, i.e. be ‘bio-
mass harmonized’, over the globe. However, an effort
to alignwith IPCC good practice guidance (i.e. uncer-
tainties are (i) ‘neither over- nor under-estimates as
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far as can be judged and (ii) ‘uncertainties are reduced
as far as practicable’ (IPCC 2006, 2019), will have
a mutual benefit of resolving the above-mentioned
shortcoming in the next iteration of the maps.

So far, bridging science-to-policy to use AGBD
maps in the context of the UNFCCC has entailed
identifying generic gaps inmeeting user requirements
(e.g. Herold et al 2019). Below, we provide a concrete
set of actions that can be taken by the map producers,
and scientists involved in space-based AGBD estima-
tion broadly, to align with IPCC guidance and facilit-
ate the uptake ofmaps by nations. These actionsmust
be viewed in the context of how nations with vary-
ing degrees of NFI maturity (i.e. from non-existent
to advanced NFIs) could use space-based AGBD
maps; (a) as stand-alone datasets to directly estim-
ate AGBD, (b) as auxiliary datasets to enhance NFI-
based AGBD estimates (GFOI 2020), or (c) as inde-
pendent estimates for NGHGI reporting and verific-
ation, and to support expert-reviews of submissions
to the UNFCCC.

4.1. Align uncertainty assessment frameworks
First, regardless of the use of the AGBD maps, they
must move towards a consistent and common ana-
lytical framework for defining and reporting inform-
ation on the precision of AGBDestimates. Conflicting
statistical terminology is unappealing and has led
to considerable confusion on the products’ align-
ment with IPCC terminology and their applicabil-
ity to national/sub-national assessments. The GEDI
products provide a strong example of such a frame-
work, breaking down reported precision into the
categories of sampling, model prediction and resid-
ual variability (negligible over large areas). This hol-
istic overview of the precision of AGBD predictions
implies that meeting IPCC guidelines for large-area
assessments (see below) is a likely prospective. For the
CCI product, specifically, setting themanymodel res-
ults (including values of variance-covariancematrices
of each model’s estimated parameters and variance
of each response variable), in a comparable analytical
framework is recommended. If the error arising due
to variance in the AGBD training dataset is estimated,
the contributing sources of error in the predictive
models of the two maps will be aligned. If addressed
in future iterations, the information may not only
enable direct comparisons to GEDI products, but
also assessments of how changes in the CCI methods
impact the precision of its estimates.

4.2. Provide source codes for large area estimations
Second, primarily if the maps are the only source
of data (e.g. for countries without NFIs), the devel-
opment of transparent, well-documented and open-
source code to estimate mean and total biomass
stocks with associated uncertainties over arbitrarily
large areas must be resourced and publicly released.
This is crucial; users cannot estimate uncertainty

at national or sub-national scales, nor validate the
maps in any statistically rigorous way without input
from the map producers, and often do not have the
expertise to do so even if relevant data are available.
Such open-source codes must incorporate processing
the covariance amongst map-unit values, i.e. spa-
tial correlations of uncertainties from pixel to pixel,
when aggregating maps-units. Further, they should
be flexible to allow users to mask map-units based on
national definitions of forest strata. Finally, if they are
designed to allow for the insertion of reference data,
they must return the ‘residual differences between
map unit values and reference data’ as well as ‘the
covariance among the residual differences’ (GFOI
2020). It is only with such information can a com-
prehensive and statistically rigorous report of uncer-
tainty be generated for policy purposes. As open-
science developments at both ESA and NASA shift
to high-computing cloud-based platforms, the oper-
ational launch and upkeep of such codes is already
feasible. The NASA-ESA Multi-mission Analysis and
Algorithm Development Platform (MAAP) is one
such ideally-positioned platform; it is a collaborat-
ive open-source science tool being developed at both
space agencies, it can host multiple global AGBD
maps, and it can support fast computing for large-
area AGBD estimation transparently and compre-
hensively for research and public use.

4.3. Provide guidance on enhancing NFIs with
AGBDmaps
Third, in the context of nations with NFIs (whether
preliminary or advanced), guidance on methods and
open-source codes to enhance national-level bio-
mass stock estimates are urgently required. For these
nations, the map-based AGBD products will be used
as a auxiliary source of data to facilitate compliance
with the second IPCC good practice guideline to
reduce uncertainties. Here, design-based estimators
that underlie the integration of the two (i.e. the NFI
data and AGBD maps) do not rely on an exhaust-
ive breakdown of the sources of uncertainty (see
examples in Næ sset et al (2020) and Málaga et al
(2022)). Instead, the nations need practical guidance
on how to relate plot-based to map-based AGBD
estimates for their specific NFI sampling designs.
For this, scientists should agree on rigorous statist-
ical procedures to enhance national and sub-national
estimates with AGBD maps. These exercises must
be conducted with, and ideally co-led by, designated
national experts to ensure adequate collaboration,
knowledge transfer and trust in the products. They
should also be open-source, transparent and flexible
to allow for the inclusion of new AGBD maps, as
they are publicly released. Active support and liais-
ing with the Global Forest Observations Initiative’s
Methods and Guidance Documentation component
(GFOI 2020) to provide unambiguous examples, for
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a range of data from countries with basic to advanced
NFIs, is strongly advised.

4.4. Make documentation and usability practical
for UNFCCC reporting
Current documentation supporting space-based
AGBD maps, including products beyond the two
examined in this study, appeals primarily to scientific
readership. While a number of recent CEOS initiat-
ives have narrowed the science-communication gap
(e.g. biomass harmonization portal (NASA 2021)
and Online Biomass Inference using Waveforms and
iNventory with GEDI (OBIWAN 2023)), consider-
able effort is needed to effectively support UNFCCC
processes, i.e. NGHGI measurement and report-
ing, and the provision of independent estimates to
inform the GST. For both of these processes, the
products made available in public platforms need
to be presented in a manner consistent with IPCC
guidance. This may be achieved, for example, by
clearly declaring ifmap-based AGBD estimates can be
used in the equations recommended in IPCCGeneric
Methodologies to estimate carbon stock changes (ch
2 in IPCC 2006, with examples in supplementary
information, section 4). The generation of map-
based AGBD estimates as in the IPCC tables for Tier
1 approaches (i.e. tables 4.7 to 4.10 in ch 4, IPCC
(2019)) is another such practical presentation of the
maps. The release of such independently assessed and
unambiguous information, particularly if accompan-
ied with estimates of uncertainty, can also effectively
support technical expert reviews of submissions to
the UNFCCC.

5. Conclusion

Our study has shown how the methodological
approaches and AGBD estimates of the current NASA
GEDI and ESA CCI biomass maps compare, identify-
ing strong relations between both products and NFI
estimates in four countries, yet stressing the need
for validation with independent reference data. These
results are remarkably promising. Direct comparis-
ons were, however, limited by the dissimilarities in the
two uncertainty estimation frameworks. In view of
the expected release of numerous space-based AGBD
maps over the next decade, including those from the
New Space sector (Ochiai et al 2023), this short-
coming must be overcome. NASA and ESA must set
the stage on how the precision of estimated AGBD
is documented; they must provide aligned, compar-
able, and rigorously assessed estimates, particularly
for large-area assessments, such that future products
follow suit. Further, whilemap producers improve the
accuracy estimates and increase their precision, it is
likely that they will offer well-posed opportunities to

be used as stand-alone datasets, or be fused with the
NFI data, for policy reporting. Map producers must
actively liaise, with each other and policy experts,
to formalize the approaches for the operational use
of AGBD maps in national-level reporting. Together,
they must take a step toward publicly releasing AGBD
estimates (and associated variance) comparably and
comprehensively, and in a practical manner in line
with IPCC guidance to ensure adequate and action-
able policy impact. It is with these concrete recom-
mendations that a consistent, reliable and replicable
message on global biomass stocks can be conveyed to
the public.
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