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1. Motivation and significance

Arches are widely used as structural elements in the construc-
tion of coverings for open spaces where they can be subjected
to lateral and vertical actions from seismic events. These loads
are usually represented by mass-proportional static forces during
preliminary assessments, an approach that is also adopted herein
Although arches have been the subject of intensive analysis since
the XVII Century, there is much less research on their optimal
shape when subjected to horizontal seismic loads; and, to the
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authors’ knowledge, only a handful of studies have dealt with
this. By contrast, a large amount of research has been carried out
on the analysis of masonry arches subjected to vertical loads. In
this context, the optimal shape of a masonry arch is often asso-
ciated with the catenary [1,2]. This is despite proofs offered by
Milankowitch [3] and Makris and Alexakis [4] who demonstrated
that, apart from 1D arches, admissible thrust-lines cannot be of
catenary shape, hence an arch of finite thickness that resembles a
catenary cannot be automatically assumed as optimal. Moreover,
it has been proven that there is no minimum thickness associated
with a catenary arch under its own weight [5].

Past studies have mostly examined the stability of arches of
classical form under static loads through analytical procedures
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[1,3,4,6-8] or numerical techniques [9-11]. However, these anal-
ysis have usually been constrained to circular arches of uniform
thickness. In his seminal work, Oppenheim [12] formulated the
equations of motion for circular arches under base motion as-
suming eight radial joints. Although the collapse mechanism of
a masonry arch is rightly associated with a minimum horizontal
acceleration for a given thickness, the definition of a pre-defined
four-link assumption precludes neighbouring mechanisms that
may originate in monolithic arches. On the other hand, Uzman
et al. [13] was among the first to apply optimisation methods to
develop a recursive relationship for the design of parabolic and
circular arches of varying cross section.

This work presents a MATLAB-based package that determines
the minimum thickness and corresponding collapse mechanisms
for arches of any form either monolithic or with voussoirs when
subjected to concurrent gravity and seismic inertial loading. The
programme allows the exploration of the different aspects influ-
encing the minimum thickness of an arch subjected to inertial
loading like the arch’s aspect ratio, the magnitude of the inertial
load as well as different gravitational fields. The software also
allows the estimation of the imminent hinge locations associated
with the likely collapse mechanism. Importantly, the effects of
the gravitational acceleration are parametrised in terms of a
gravitational multiplier («) taken as a proportion of the terrestrial
gravitational acceleration g = 9.81 m/s%. In this way, (i) verti-
cal seismic components; (ii) additional vertical loads and/or (iii)
off-Earth gravitational fields can be considered.

2. Software description
2.1. Algorithm description

The numerical procedure for thrust-line analysis presented
herein relies on the discretisation of the arch into a finite number
of distinct blocks whose properties are summarised in Table 1.
Each block is defined by the radial coordinates of its vertices,
(i, 6;). The algorithm contains the class definition for the object
and takes as input the corners’ polar coordinates and automat-
ically generates the other properties based upon the density,
gravitational acceleration, gravitational multiplier and lateral ac-
celeration. Since an equivalent static approach to limit state anal-
ysis is adopted the static horizontal inertial load, F;, is taken
as the product of its area, density and lateral acceleration and
assumed to act on the centroid of each block

A masonry arch can be simulated by means of a few blocks
where each one of them represents an individual voussoir
whereas a greater number of blocks can approximate a mono-
lithic construction. Moreover, the arch’s local thickness can be
easily varied by changing the radial coordinates of the corre-
sponding block. Besides, the Couplet-Heyman assumptions [1]
are adopted including those of negligible tensile strength and that
the structure must maintain stability through compression only
paths [2,14].

Our algorithm also requires an initial estimation of the reac-
tion forces at the arch springings. Previous work has relied on
arbitrary distributions of vertical and horizontal forces e.g. [15];
instead, we employ the virtual work principle - by suppress-
ing momentarily the Couplet-Heyman undeformability assump-
tion [1] - in order to obtain initial estimates that are closer
to physical realisability. These initial reaction estimates will be
subsequently updated during the calculation process as described
later in this paper.
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(a) Six-voussoir arch showing the funicular polygon (left) and
its corresponding Force Polygon (right). Thick dashed line rep-
resents the Funicular Polygon under a ground acceleration of
0.3¢g, whilst the thin dashed line represents the line of action of
the resultant force (F;) acting at each block’s centroid.

Thyi-1

(b) Equilibrium of forces
acting on Block ¢ where
This Toyiy Fryiy Foi and W
are the horizontal thrust,
vertical thrust, horizontal
force, vertical force and
self-weight of block i, re-
spectively.

(¢) Moment equilib-
rium of a block.

Fig. 1. Construction of the funicular polygon.

2.1.1. Construction of the funicular polygon

The funicular polygon defines the lines of action of the resul-
tant thrust forces throughout the arch. This can be visualised by
moving from left to right in Fig. 1(a) which depicts a six-voussoir
arch subjected to its self-weight and constant horizontal (inertial)
forces from left to right equivalent to a support acceleration of
0.3g, where g is the terrestrial gravitational acceleration. The
initial line of action is that of the reaction force, R;, and the
vertical components of the forces are incrementally reduced by
the weight of each block until the final one is coincidental with
the reaction force at the other side, Rg. This process is schemati-
cally shown in Fig. 1(b) for the ith block. A simple approach to
constructing a funicular polygon is through the use of a force
polygon that represents the equilibrium of forces within the
structure [6,14].

2.1.2. Thrust-line construction

The many intricacies involved in obtaining an admissible
thrust-line for non-classical forms can complicate the numerical
calculation of the funicular polygon, especially when low-gravity
conditions or extreme lateral forces are examined. Instead, a
simpler and more robust approach based on the moment equi-
librium of a block, as shown in Fig. 1(c), is followed herein. To



Thomas McLean, Christian Mdlaga-Chuquitaype, Nicos Kalapodis et al. SoftwareX 15 (2021) 100731

Table 1

Block properties.

Computer variable Definition

r Radial coordinates (ry, ry, 13, I3)

theta Angular coordinates (61, 05, 03, 64)

density Material density [kg/m?]

A Area of the block [m?]

M Mass of the block per unit width [kg/m]

w Weight of the block per unit width [N/m]

r_cg Radial coordinate of the centre of gravity (re)
theta_cg Angular coordinate of the centre of gravity (6,)
Fh inertial load per unit width due to ground acceleration [N/m]

START

/ Define arch geometry, global variables GravitationalAcceleration, LateralAcceleration /

and Density as well as the required start (rhs) and end (lhs) positions of the thrust line

J
v
Discretise geometry into N block structures Construct force polygon using (xp,yp) and
- this will compute W; and F}, ; W, and F, ; for each block

v ¥
- : - - Construct thrust line using rotational
[Estlmate reaction f_orcg Sl using virtual work] equilibrium of each block starting from the
principles . o
# specified start position (rhs)

Set the pole position (xp,yp) at the origin:
xp =0, yp =0 (arbitrary)

yp such that the thrust line ends at the

Y
Run find_end_thrust algorithm to adjust
required position

A
Set dx as the maximum of:
10% of estimated horizontal reaction at the left support
5% of estimated vertical reaction at the left support

set dxs = 0, this
will act as a
counter

Determine
start_location

ut;

Check if thrust line is
within the arch
geometry

The function AboveOrBelow will find the above
position of the maximum distance from
the thrust line to the arch and
determine whether this point lies above
or below the arch geometry

I -

v

within the arch
geometry

geometry

Check if the thrust
. line has now changed
in from 'above' to 'below’
or vice versa

Check:
current_location =
tart_locatio

1l
I
I
Update force polygon and | L] Yo
[ construct new thrust line in UPdiZte f;)rce P‘g}llygor:; f‘_nd ] i S
¢ } construct new thrust line !
| |
! heck if thrust line i out Determine |
Check if thrust line is o within the arch current_location ! o
I
I
|
I
I
)

out

xp_in = xp T

— if start_location =
xp_out = xp above:

xp_out =xp + dx
else:
xp_out =xp - dx

l

Bisection method using xp_in and
xp_out to find minimum thrust line

No thrust
C END line found ]«Yes

Fig. 2. Limit thrust-line algorithm.

Check
urrent_locatio,

this end, we recognise that the thrust components, T; and T, First we take moment equilibrium about (X, yc;) wWith positive
are known to satisfy horizontal and vertical equilibrium through moments anticlockwise;

the construction of the force polygon. Therefore, by assuming an

initial point (x;, y1) the only unknown is coordinate pair (x5, y-). TyoXeg +ThoVee +To 1(X1 —Xeg ) = Th 1(Veg —¥1) = Ty 2X2+Thoy2 (1)
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Imposing that (x,, y,) must lie on the line defined by the top
edge y = mx + c:

—C=mxy — Yo (2)

leads to:

a|_|Tv2 Th2|)x

=] Lm =1 3)
A=TX = X=T'A

where a =T, 5Xg + Tp2Yeg + To,1(X1 — Xeg) — Tn1(Veg — Y1)-

2.2. Limit thrust-line algorithm

The initial estimates of reaction forces, assumed to act at the
mid point of each support and calculated through the virtual
work principle, are a good first approximation but can lead to a
non-admissible set of thrust forces (i.e giving a thrust-line that
does not lie within the arch geometry). In order to converge to a
feasible limit thrust-line an iterative procedure is required. To this
end, our algorithm allows the user to specify a range of starting
(right hand side) and end (left hand side) points of the thrust-line.
These limits can be set on the basis of the thickness of the arch at
its springings, the conditions of the abutments, or other project-
specific design criteria. The vertical position of the force polygon
pole, which controls the amount of vertical thrust in the system,
will determine where the thrust line ends. Hence by iteratively
adjusting the vertical position of the pole, a thrust-line (either
admissible or non-admissible) can be found that starts and ends
at the user’s specified points. Similarly, the horizontal position of
the force polygon pole controls the amount of horizontal thrust in
the system, with more horizontal thrust creating ‘flatter’ thrust-
lines. Using these principles, the horizontal position of the pole
is iteratively adjusted to make it steeper or shallower until an
admissible thrust-line is found. Once an admissible thrust-line is
found, the bisection method is implemented to find the limiting
thrust-line that lies just within the arch geometry. The detailed
process is presented in Fig. 2.

2.3. Minimum thickness algorithm

The numerical framework set out above can be easily adapted
into a minimum-thickness search procedure. To this end, we ob-
serve that the start and end points of an arch’s minimum thrust-
line under self-weight, are shifted to the right when horizontal
inertial loads are applied from left to right As the horizontal
loading is increased, the end points of the thrust lines will attain a
limit position at the intrados on the left and at the extrados on the
right (for a left-to-right lateral load). Evidence of this can be found
in the collapse mechanisms presented in the literature, e.g. [6,16],
including cases with embrace angles different than 180°. Assum-
ing that this effect will occur in any arch of standard geometry
provides a methodical way to search for a limiting thrust-line.
Once the thrust-line has reached the intrados at the left support
or the extrados at the right support, the hinges implied by these
points will remain there. Thus, once this occurs, the start and
end points can be assumed to be fixed; hence minimising the
number of required iterations. However, this supposition may not
hold for small lateral loads and more complex non-classical arch
forms where this condition can be lifted, and additional iterations
performed.

The first step to find the minimum thickness of arches subject
to horizontal inertial loads is to analyse their stability under
their own weight. To this end, the end and start points of the
thrust-line should be set to ensure its symmetry. The thickness
of the arch can then be iteratively reduced with a constant step
size until no new admissible thrust-line can be found. Iteratively
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Fig. 3. Convergence of the minimum thickness calculation to analytical solu-
tions [6] for semicircular arches. € is the dimensionless inertia loading € = ug/g
where ug is the ground acceleration.

repeating this with smaller step sizes will allow the minimum
thickness to be found to a desired level of accuracy. The same
process can be used to calculate the minimum thickness of an
arch subject to horizontal inertial loading. However, in this case,
for each starting point of the thrust-line at the right support, an
additional step is implemented to allow the end point to move
through the thickness of the left support. In this paper, minimum
thicknesses, in terms of thickness over rise, t/R, are calculated to
five decimal places to facilitate their comparison with analytical
formulations, when available.

Fig. 3 shows the convergence of the minimum thickness al-
gorithm described above. The relative error is calculated against
the analytical results for semicircular arches given by Alexakis
and Makris [6]. Three sets of results are presented for increasing
levels of dimensionless inertial loading, € = iig/g, where iig is the
ground acceleration and g = 9.81 m/s? is the acceleration due
to gravity on Earth. In the case of self-weight only, ¢ = 0, and
for ¢ = 0.6 the start and end positions of the thrust-line were
known a priori either at the extrados or intrados, and hence no
iterations through the thickness of either support were required.
In these two cases, the error quickly approximates 0% with only
40 blocks. In the case of ¢ = 0.3 the position of the thrust-
line at the left support is not known and therefore the algorithm
has to search through its thickness. To this end, the left support
was discretised into two hundred increments. These additional
iterations cause an appreciable increase in the computational
time and the algorithm converges to 0.09% relative error.

3. Validation against analytical results on classical arch forms

The thrust-lines and their corresponding minimum
thicknesses outputs generated with OpenArch are compared
against the analytical results provided by Alexakis and Makris [6]
for semicircular arches and by Kampas et al. [16] for parabolic
arches. Comparisons are established in terms of both minimum
thickness and predicted hinge location for varying dimensionless
inertial loading, € = iiy/g.
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(b) Validation of minimum thickness to rise ratio (¢/R) and hinge loca-
tions of semicircular arches subject to equivalent static inertial loading
for a constant horizontal acceleration e = ii4/g [-]. Curves corresponding
to the same ¢; are tagged together with an ellipse.

Fig. 4. Semicircular arches of minimum thickness. Validation against analytical solution by Alexakis and Makris [6].

Table 2
Validation of the minimum thickness of semicircular arches subject to equivalent
static loading for a constant horizontal acceleration € = il /g[-] [6].

€ =ig/g t/R (Analytical) t/R (Numerical) Relative error (%)
0.0 0.10748 0.10746 —0.02
0.1 0.13590 0.13597 0.05
0.2 0.16897 0.16908 0.07
0.3 0.20636 0.20648 0.06
0.4 0.24752 0.24758 0.02
0.5 0.29175 0.29170 —0.02
0.6 0.33788 0.33785 —0.01

Table 3

Validation of the minimum thickness of parabolic arches subject to equivalent

static inertial loading for a constant horizontal acceleration € = iig /g [-] [16].
€ =ig/g t/R (Analytical) t/R (Numerical) Relative error (%)
0.00 0.023863 0.02386 —0.01
0.05 0.037963 0.03802 0.15
0.10 0.056831 0.05710 0.47
0.20 0.100109 0.10131 1.20
0.30 0.145416 0.14764 1.53
0.40 0.191623 0.19470 1.61
0.50 0.238416 0.24205 1.52
0.60 0.285692 0.28956 1.35
0.7916 0.377515 0.38097 0.92
1.0554 0.506764 0.50827 0.30
1.2048 0.581500 0.58195 0.08
1.3193 0.639596 0.63984 0.04

Semicircular arches

One hundred blocks with radial edges were used to accurately
represent the geometry for a direct comparison with the analyti-
cal results of [6]. This relatively high discretisation was necessary

in order to achieve a reasonable estimate of the hinge locations as
they can only occur at the discrete block edges. Fig. 4(a) presents
the nomenclature and convention followed. Also, the start and
end positions of the thrust-line were discretised into two hundred
increments along the arch support thickness. Table 2 shows a
comparison between the numerical and analytical results for min-
imum thickness ratios, t/R, while the hinge locations are shown
in Fig. 4(b).

The numerical results presented in Table 2 and Fig. 4(b) show
a very close match between our predictions and the analytical
results. A maximum relative error in minimum thickness of 0.07%
is observed for € = 0.2. These excellent results are also evident
in the hinge locations, confirming that the estimated thrust-line
has the correct shape. This is crucial as the shape of the thrust-
line will form the basis of the form finding algorithm presented
later in this paper.

Parabolic arches

The analytical solutions provided by Kampas et al. [16] on
parabolic arches were also used for validation purposes. Fig. 5(a)
shows the convention adopted. Radial ruptures were assumed
and five hundred blocks were employed in order to achieve a high
level of accuracy given the relative complexity of the parabolic
arch, with the crown of the arch being particularly steep. The
study by Kampas et al. [16] is the first to consider the effect of
low-gravity conditions on the minimum thickness and collapse
mechanisms of parabolic arches. Simply put, low-gravity effec-
tively amplifies the value of ¢ for a given level of “horizontal”
inertial forces due to the reduced self-weight. To ensure that the
algorithm is robust enough to cope with the effects of low gravity,
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(a) Limit thrust-line of a parabolic arch un-

der self-weight with aspect ratio ¢ =

R/S

and hinge position conventions for parabolic

arches.
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(b) Validation of minimum thickness to rise ratio (¢/R) and hinge loca-
tions of parabolic arches subject to equivalent static inertial loading for
a constant horizontal acceleration € = iiy/g [-], where u, is the ground
acceleration. Validation against analytical solution by Kampas et al.
[16]. Curves corresponding to the same ¢, are tagged together with an

ellipse.
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(¢) Minimum thickness to rise ratio (¢/R) and imminent hinge locations
for parabolic arches of constant thickness subject to equivalent static
inertial loading for a constant horizontal acceleration € = iy/g [-], where
ug is the ground acceleration. Curves corresponding to the same ¢; are
tagged together with an ellipse.

Fig. 5. Parabolic arches of minimum thickness.

results for extreme loads have also been validated against the
analytical results.

Table 3 and Fig. 5 show the minimum thickness and hinge
locations calculated using the numerical approach alongside the
analytical results. The relative error in minimum thickness in-
creases from 0.01% in the self-weight case, to 1.61% at ¢ = 0.4,
before reducing to 0.04% at ¢ = 1.31926. This is due to the

aforementioned steepness of the arch in the region of the crown.
The numerical procedure predicts slightly lower hinge locations
in the approach to this region, ¢,. This is because in this ‘sensitive’
region, a small change in angular coordinate has a relatively
large effect on the radial coordinate. As the numerical approach
under predicts the angle ¢, its separation with ¢j3 is greater. This
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t/R = 0.10746
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t/R = 0.02855

Fig. 6. Comparison of minimum-thickness semicircular and parabolic arch collapse mechanisms under self-weight and varying levels of constant horizontal acceleration

€ = iy /g, where ug is the ground acceleration and t/R the thickness to rise ratio.

greater separation between the two hinges is the cause for the
slight overestimation of the minimum thickness.

Parabolic arches of constant thickness

The minimum thickness algorithm presented in Section 2.3
can be used to find solutions for arches of any geometry under
different inertial loading. For example, there are multiple ways
to define a parabolic arch as a radial cut through its midline is
not necessarily perpendicular to it [16]. Or in other words, it is
impossible to ensure both a constant thickness perpendicular to
the midline and intrados and extrados that are of the same form.
In particular, at least three options exist: (i) the intrados and
extrados are defined by parabolas analogous to the centre line, (ii)
a constant thickness perpendicular to the midline is assumed, and
(iii) a constant radial thickness is assumed (for the given point of
reference). Whilst the difference in geometry between these three
options is small, they will lead to different estimates of minimum
thickness and hinge locations. Besides, Makris and Alexakis [4]
have demonstrated that the thrust-line adopts different shapes
depending on the stereotomy of the arch.

In this section, parabolic arches of constant thickness perpen-
dicular to their midline are examined. These arches behave in a
manner almost identical to the parabolic arches with radial cuts
validated in the previous section, albeit with a small reduction in
minimum thickness. These results, calculated using one hundred
blocks with radial edges, are presented in Fig. 5(c). The same
naming conventions presented before in Fig. 5(a) hold.

The immediately striking result, is that parabolic arches are
far more efficient than semicircular arches under lower loading.

When subjected to their self-weight only, the thickness of a
semicircular arch is approximately 11% of its rise compared to
2.4% for a parabolic arch (see Tables 2 and 3). The dramatically
thinner parabolic arches under smaller loads also result in differ-
ent collapse mechanisms to those of a semicircular arch under the
same conditions. This feature is explored further in Fig. 6 which
shows a comparison of the collapse mechanisms of semicircular
and parabolic arches of minimum thickness under various loading
conditions. In complete contrast to the semicircular case, ¢; and
¢3 correspond to extrados hinges whilst ¢, and the springing
hinges occur at the intrados. This difference causes the parabolic
arch to buckle inwards under its own weight compared to out-
wards in the case of the semicircular arch. Despite this initial
difference, under a high enough lateral loading, both geometries
converge to the same two-springing four hinge mechanism iden-
tified by Alexakis and Makris [6]. In the transition to this state, ¢,
of the parabolic arch rotates clockwise to the extrados of the right
springing. This is evidenced by the hinge rotations presented in
Fig. 5(c) where shortly after ¢, hits the springing, ¢, and ¢3 begin
to reverse direction.

4. Impact

The stability of arches subjected to concurrent seismic and
vertical loads is a foundational problem in structural mechanics.
Arches are versatile and elegant structures that are ubiquitous in
civil infrastructure from vernacular constructions to the most re-
cently proposed extraterrestrial habitats [17]. The software pack-
age presented here enables a quick and precise estimation of
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the minimum-thickness associated with a stable behaviour of
these structures and their corresponding failure mechanism. The
specification of the problem parameters is straightforward and
the code is user-friendly. The code has been validated against
available analytical solutions and it has already been used to gain
insight into the mechanics of arches of the parabolic shape in [16].
Moreover, the software can be incorporated into form-finding
algorithms for the easy exploration of more advanced geometries
like in [18]. All these features make OpenArch a useful tool for
researchers and engineers interested in the design of optimal
structures.

5. Conclusions

This paper has described the implementation and features of
the OpenArch software package for the identification of
minimum-thickness arches of any geometry and their corre-
sponding collapse mechanisms under seismic action. The outputs
of the software have been validated against analytical formula-
tions available in the scientific literature. This has shown the ca-
pabilities of the code in addressing classical geometries, although
the code can operate with arches of more complex configurations.
In this regard, no constant thickness requirements are hard-coded
into OpenArch, and it is expected that it can be used in the
exploration of non-standard arch forms under extreme loading
by engineers and researchers alike.
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