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Abstract
This paper is motivated by the renewed interest in space exploration and the
need to provide structurally sound and resource-efficient shielding solutions for
valuable assets and future habitable modules. We present, implement and test a
methodology for the preliminary design and assessment of optimal arch forms
subjected to self-weight as well as seismically induced loads. The numerical
framework, built around a limit thrust-line analysis, previously published by the
authors, is summarized first. This is followed by a detailed account of the form-
finding algorithm for arches of variable thickness. Special attention is placed on
the physical feasibility of our assumptions and the justification of the engineer-
ing inputs adopted. The newly form-found arches achieve material efficiencies
between 10% and 50% in comparisonwith their constantminimum-thickness cir-
cular or elliptical counterparts, depending on the relative intensity of the seismic
action. The influence of the initial input geometry and the stabilising presence of
additional shielding material against extreme radiation are also evaluated with
emphasis on the effects of low-gravity conditions. Finally, a case study is pre-
sented and Discrete Element Models of constant and varying thickness arches
(VTAs) are assessed under a set of representative ground-motions on a lunar set-
ting. The significant over-conservatism of constant thickness arches (CTAs) is
made manifest and potential improvements of the optimally found arch shape
are highlighted. Although developed with extraterrestrial applications in mind,
the results and methods we present herein are also applicable to terrestrial con-
ditions when material efficiency is of utmost concern.

KEYWORDS
arch optimization, extraterrestrial structures, failure mechanism, limit thrust-line, minimum
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1 INTRODUCTION

Arches are widely used as structural elements in the construction of coverings for open spaces where they can be subjected
to lateral action from seismic events. Although they have been the subject of intensive analysis since the XVII Century,
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there is a dearth of research on their shape optimization when subjected to horizontal seismic loads; and, to the authors’
knowledge, only a handful of studies have dealt with this. By contrast, a large amount of research has been carried out on
the analysis of masonry arches subjected to vertical loads. In this context, the optimal shape of a masonry arch is often
associated with the catenary.1,2 This is despite the fact3 that there is no minimum thickness associated with a catenary
arch under its own weight. Moreover, Milankowitch4 andMakris and Alexakis5 demonstrated that, apart from 1D arches,
admissible thrust-lines cannot be of catenary shape, hence an arch of finite thickness that resembles a catenary can not
be automatically assumed to be optimal. Past studies have mostly examined the stability of arches of classical form under
static loads focussing on arches of classical form like semicircular,1,4–7 parabolic,8,9 elliptical10 and catenary arches.3,11
The issue of finding the optimal shape of arches subjected to concurrent vertical and seismic loads is particularly impor-

tant for the provision of extraterrestrial outposts where material efficiency is of paramount importance, especially as
lunar ground motions can pose a threat to the settlements.12 With the increasing level of interest in space exploration
from both public bodies and private firms,13 the demand and need for the design of resilient lunar and martian habi-
tats have become apparent. In this context, 3D-printed arch structures that make use of an in situ resource utilisation
(ISRU) framework are potentially of great value as they require minimal transportation of material from Earth.14 The use
of 3D-printing will also allow for the construction of structures ‘of considerable dimensions, with virtually any shape’.15
Nevertheless, extraterrestrial structures will be subject to extreme design conditions due to the harsh environment.16–18
As summarised by Kalapodis et al.,13 there are four potential sources of lunar ground motions: deep moonquakes, shal-
low moonquakes, thermal moonquakes and meteorite impacts; and similar conditions are expected on Mars. Ther-
mal moonquakes are very small magnitude events caused by the extreme temperature variations on the Moon and are
unlikely to be a key design consideration for lunar structures. However, due to the far thinner atmosphere on the Moon
or Mars compared to Earth, seismic motion due to meteoroid impacts can pose a significant hazard to extraterrestrial
structures.19
The optimization of arches subjected to both their ownweight and lateral seismic action has only been recently explored.

The first attempt to include lateral forces into a form-finding method based on Thrust Network Analysis (TNA) was per-
formed by Marmo and Rosati.20 Although the TNA method in its original form21 can be used to produce compression-
only shells under vertical loads, Marmo and Rosati’s reformulation20 involved a dissociation of the force diagram from
its reciprocal form counterpart, thus severing its applicability for optimization studies. On the other hand, Michiels and
Adriaenssens22 used graphic statics to generate arches subjected to gravity and seismic loads based on the geometric
manipulation of funicular polygons obtained under statical lateral forces. However, the use of funicular polygons does
not guarantee the optimality of the arch shape and its geometrical manipulation poses questions as to the physical inter-
pretation of the procedure. More recently, Kimura et al.23 proposed a method for the shape optimization of tapered arches
subjected to horizontal loads by discretizing them into a series of beam elements with piecewise constant section and
minimizing their total strain energy. This study focused on limiting the effect of bending on the arch (finite stiffness), in
order to generate no-tension arches by operating on the coordinate control points and updating the sections of the ‘numer-
ical’ beams. All these studies have focused on terrestrial applications and the effects of low-gravity conditions were not
explored. The first study to consider the effects of low gravity on the stability of arches was conducted by Kampas et al.24
They employed a variational formulation to conduct thrust-line analyses of parabolic arches and concluded on the impor-
tance of carrying out dedicated optimization studies for arches of varying thickness under low gravity.
This paper focuses on the optimization of arch shapes for protective extraterrestrial structures subjected to a combina-

tion of vertical and lateral seismic loads. We propose and implement a computational methodology based on equivalent
static loads and limit thrust-line analysis for the generation of optimal arch shapes under varying gravitational conditions.
Therefore, we assume structures with: (i) infinite stiffness, (ii) infinite compressive strength, (iii) zero tensile strength, (iv)
no shear consideration and (v) no sliding (as appropriate for monolithic arches without physical voissoirs). Moreover, the
effect of stereotomy on the structural shape is out of the scope of this paper. Unlike previous studies where a number
of arbitrary design decisions had to be made, which can arguably compromise the physical meaning of the thrust-line
methodology, in this paper, we pay special attention to the justification of the engineering inputs adopted and the ratio-
nalization of our thrust-line manipulation. Initially, the paper introduces the numerical thrust-line analysis framework
adopted. This is followed by the presentation of a rigorous form-finding algorithm and its application to the exploration
of optimal arches of varying thickness. The structural benefits of additional loose regolith shielding are also explored.
Importantly, the tools and methods developed are intended for the initial design stages where an exploration of mate-
rially efficient forms is crucial before embarking into more detailed structural analyses. Also, although developed with
extraterrestrial applications in mind, the results and methods we present herein are also applicable to normal terrestrial
conditions whenever the design may be governed by material saving considerations.
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2 NUMERICAL LIMIT THRUST-LINE ANALYSIS FRAMEWORK

The numerical procedure for thrust-line analysis presented previously in McLean et al.25 is used herein. In it, McLean
et al. discretize the arch into a finite number of distinct blocks fully defined by a set of radial coordinates (𝑟, 𝜃) and their
material density. We hypothesize that a masonry arch can be simulated by means of a few blocks where each block rep-
resents an individual voussoir whereas a greater number of them can approximate a brittle monolithic structure. This
brittle response may have important implications that would need to be assessed within a holistic and hazard-consistent
resilience framework, however, it is suitable for the sintered-regolith material currently being proposed for extraterres-
trial constructions, as well as earth-based realizations here on Earth. Importantly, the arch’s local thickness can be easily
varied by changing the radial coordinates of the corresponding block. This feature is advantageous during the construc-
tion of Varying thickness arches (VTA) as shown in later parts of this paper. Besides, the typical assumptions of neg-
ligible tensile strength and that the structure must maintain stability through compression only paths are adopted.2,21
Our focus on arches obeys to their fundamental nature as building blocks of more complex three-dimensional struc-
tures. It is recognised that 3D models will be useful, and indeed necessary, to assess the seismic resilience of dome
type structures or structures with comparable dimensions in multiple directions, which are outside the scope of the
present study.
McLean’s algorithm also requires an initial estimation of the reaction forces at the arch springings. Previous work has

relied on arbitrary distributions of vertical and horizontal forces, for example, Michiels and Adriaenssens22; instead, vir-
tual work principles are employed by initially relaxing the Couplet–Heyman undeformability assumption1 and obtaining
initial estimates that are closer to physical realizability, which will be updated during the subsequent process of calcula-
tion. To this end, the funicular polygon, not to be confused with the thrust-line, defines the lines of action of the resultant
thrust forces throughout the arch. During this process, the seismic equivalent static load at each block is assumed to act
at its centroid and to be directly proportional to its mass.
A simple approach to constructing a funicular polygon, followed in other studies, is through the use of a force polygon

that represents the equilibrium of forces within the structure.6,21 It should be recalled that a force polygon comprises of
two components, the load line and the pole. The load line represents themagnitude and direction of resultant forces acting
at each block centroid while the lines that connect the pole to the vertices of the load line will define the resultant thrust
forces. Once constructed, the force polygon will, by definition, satisfy equilibrium. In general, the nodes of the funicular
polygon can be constructed as the intersection of two lines: (i) a line of resultant centroidal force, and (ii) a line of previous
thrust force. However, the many intricacies involved in obtaining a thrust-line for non-classical arch forms complicate
the numerical implementation of a direct thrust-line algorithm of this type, especially when low-gravity conditions are
examined. Hence, a solution based on the moment equilibrium at the block level, which progresses from one side of the
structure to the other, has been adopted.25
The initial estimates of reaction forces, assumed to act at the midpoint of each support and calculated through virtual

work principles, are a good first approximation but can lead to a non-admissible set of thrust forces (i.e. giving a thrust-line
that does not lie within the arch geometry). In order to converge to a feasible limit thrust-line, an iterative procedure is
required. To this end, the algorithm allows the user to specify a range of starting (right hand side) and end (left hand side)
points of the thrust-line. These limits can be set on the basis of the thickness of the arch at its springings, the conditions
of the abutments, or other project-specific design criteria. In this way, support design conditions are incorporated into the
sizing processwithout the need to implement artificial offsetting of thrust-lines that compromise their physicalmeaning.22
The vertical position of the force polygon pole is then adjusted and its horizontal position adapted until an admissible
thrust-line is found. Once an admissible thrust-line is found, the bisection method is implemented to find the limiting
thrust-line that lies just within the arch geometry.
It is worth noting that under low-gravity conditions, evenmodest levels of ground acceleration (lateral load) can induce

relatively large horizontal force components due to the lower structural weight (vertical forces). In these circumstances,
the initial assumption of reaction forces acting at the centre of the supports can lead to uplift at the left support for hori-
zontal loads acting left to right, that is, reaction force pulling the arch down. This will cause the pole to be initially placed
above the load line preventing the algorithm from converging. This issue can be overcome by initially placing the starting
pole position at a large distance below the load line, or by calculating the initial reaction estimate at the left intrados.
Under high enough lateral loads, however, neither of these methods will guarantee convergence to an admissible thrust-
line. This indicates susceptibility to uplift of the arch at the left support (for loads acting left to right) and the non-existence
of a purely compressive load path.
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(A) Limit thrust-lines and corresponding force polygon for left to right inertial loading and mirrored
thrust-line.

(B) Admissible thrust-line for self-weight and corresponding force polygon.

F IGURE 1 Thrust-line analysis on minimum thickness input as the starting point of the form-finding process

3 FORM-FINDING ALGORITHM

3.1 Design algorithm

The form-finding methodology outlined above and detailed in McLean et al.25 starts with any standard geometry of min-
imum thickness for a given loading scenario. This minimum thickness algorithm can be used to generate the input to
our form-finding process. The arch’s limit thrust-line is then obtained for left to right loading and mirrored as shown in
Figure 1(A) to take into account the multi-directionality of the earthquake hazard. Importantly, previous work has not
been clear on the ability of the output to resist a load combination involving vertical gravity loads alone, for example, in
the absence of lateral action, which is the most persistent design condition. By contrast, we are explicit in incorporating
this verification into our algorithm by finding an admissible thrust-line for self-weight such that it passes through the
three points of intersection of the lateral loading thrust-lines as depicted in Figure 1(B).
A new arch is then formed on the basis of the three previously described thrust-lines. To this end, an envelope is defined

by offsetting the three thrust-lines by a distance 𝛿. Instead of adopting arbitrary values for the offset or sideways translation
(e.g. Michiels and Adriaenssens22) which may compromise the physical significance of the thrust-line, we define 𝛿 on the
basis of the material’s finite compressive strength as suggested in Makris and Alexakis.5 This has the effect of preventing
the three ‘pinch points’ of the form-found arches from becoming unreasonably thin. The offset, 𝛿, is calculated based upon
the reaction force, 𝐹, at the right support as this is the most highly stressed region of the arch under left to right inertial
loading. 𝐹 can be easily obtained from the force polygon associated with the corresponding limit thrust-line. By assuming
a triangular stress distribution at the right support the offset 𝛿 can be estimated as:

𝛿 =
2

3

𝐹

𝜎𝑚𝑎𝑥
(1)

where 𝜎𝑚𝑎𝑥 is the finite compressive strength of the material. For example, in the case studies presented later in the
paper, the compressive strength of sintered 3D-printed lunar regolith simulant was adopted based on the work of Goulas
et al.26 A new arch envelope (first generation) can then be created as shown in Figure 2 and an improved arch form
fitted to it. For extreme loading conditions, as will be the case for the design of lunar and martian arches, the thickness
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F IGURE 2 First-generation optimized (varying thickness, VTA) arch constructed around the envelope defined by the admissible and
self-weight limit thrust-lines of the optimal classical arch

variation throughout the arch may become substantial. Whilst this may not be a problem for theoretical stability, large
stress concentrations at the three ‘pinch points’ can ensue. Besides, large thickness variation may also pose problems for
constructability. To mitigate this, a larger offset, specified in light of these engineering considerations, can be applied to
the self-weight thrust-line to locally increase the thickness at the three ‘pinch points’.
Once the first generation of optimized arches is obtained in the way described above, the limit thrust-line is assumed

not to vary significantly between successive iterations, an assumption that is in line with our preliminary numerical obser-
vations. As such, we assume that the limit thrust-line will pass through the extrados of the right springing (for left to right
horizontal loading) and search for an admissible thrust-line by moving the thrust-line’s end point through the thickness
of the left support starting from the intrados. If no thrust-line is found, the thickness of the arch should be increased (usu-
ally at 𝛿 increments), until an admissible limit thrust-line is found. A summary of the form-finding algorithm is given in
Figure 3.
For the generation of each new optimal arch, the internal rise over span ratio is calculated and compared to that of

the input geometry. As shown in McLean et al.,25 shallower arches (𝑐 < 1∕2) are more efficient at resisting lateral loads
and as such the algorithm will tend towards shallower and thinner arches. Therefore, in order to prevent the span from
increasing unboundedly, it is necessary to impose a geometry tolerance. In this paper, results are found for arch rise over
span ratios within a 5% difference from the input geometry. This is a design decision that can be relaxed to achieve greater
efficiencies if required.

3.2 Influence of input geometry

As the form-finding algorithm is based upon the limit thrust-line of standard geometries for a given loading, different input
geometries will result in different form-found arches. Two main parameters can be used to compare the final outputs,
namely, the material efficiency and the magnitude of the tensile force at the support. This latter parameter is of note
since although parabolic arches are more material efficient than elliptical ones, they will tend to generate higher levels
of horizontal thrust at the supports relative to their self-weight. The tensile forces that arise as a result are a key design
consideration, especially in extraterrestrial environments where the foundation may be formed from compacted regolith
with low tensile strength. To this end, tension forces are calculated from the horizontal reaction forces at the supports
corresponding to the arch’s limit thrust-line.
To create a frame of reference from which to compare the efficiency of different results, the areas, 𝐴, and tensions, 𝑇,

are normalised by the corresponding results for elliptical (semicircular for 𝑐 = 1∕2) arches of minimum thickness. The
optimal elliptical (semicircular for 𝑐 = 1∕2), parabolic and catenary arches of minimum thickness found in the previous
section were run through our algorithm using one hundred blocks. Comparisons are offered for arches with internal rise
of 10m and a maximum variation of 5% with respect to the input value of 𝑐.
Figure 4(A) compares the efficiencies of optimal form-found arches from different input geometries and varying levels

of loading, quantified by the parameter 𝜖 introduced before. Efficiency is quantified as the ratio between the total in-plane
area of the archnormalized by the corresponding area of the optimally thin semicircular counterpart,𝐴∕𝐴𝑐𝑖𝑟𝑐. As expected,
the most efficient forms are found for low levels of lateral loading (𝜖 ≤ 0.2) due to the nearly symmetrical limit thrust-
lines (minimal skewness) obtained for standard geometries under this conditions. It is also evident from Figure 4(A) that
a semicircular input yields much less efficient arches by approximately 20%. This can be further appreciated in Figure 5,
which presents a comparison of geometries for semicircular and catenary inputs for 𝜖 = 0.6. In both cases, the limit thrust-
lines correspond to two-springing four hinge mechanisms, and as such will pass through the intrados and extrados of the
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F IGURE 3 Form-finding algorithm

supports. This leads to very little change in the span of the arch during the form-finding process. However, we observed
that the limit thrust-line of the semicircular arch passes tangent to the springing intrados at approximately 80◦ from the
horizontal compared to ≈ 60◦ in the catenary case. Consequently, the limit thrust-line of the semicircular case is at a
significant distance from the intrados at the crown of the arch resulting in the algorithm quickly reaching the rise over
span ratio limit imposed. In the catenary case, its limit thrust-line passes very close to the crown of the arch and therefore
the form-found arches maintain their rise over span ratio for more generations thus yielding a more efficient arch. The
same effect is apparent in the parabolic arches explaining why the two give very similar form-found arches.
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F IGURE 4 Comparison of areas, 𝐴, and support tension forces, 𝑇, between form-found optimal arches (for a geometry tolerance of 5%)
and their minimum thickness semicircular or elliptical counterpart for the same level of dimensionless inertial loading 𝜖 = 𝑢𝑔∕𝑔 where 𝑢𝑔 is
the ground acceleration
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F IGURE 5 Comparison of geometry evolutions for semicircular and catenary inputs for a dimensionless inertial loading 𝜖 = 0.6

(𝜖 = 𝑢𝑔∕𝑔 where 𝑢𝑔 is ground acceleration). The grey shape corresponds to the minimum-thickness classical arch and the light blue to its
optimal form

Similar results are obtained for different rise to span ratios as shown in Figure 4 for 𝑐 = 1∕4 and 𝑐 = 3∕4. In this case,
the optimal elliptical input area is used for area normalization purposes. This is the reason why for 𝑐 = 1∕4, the results
show an apparent greater level of efficiency in comparison with Figure 4(A), since the elliptical minimum thicknesses is
particularly inefficient compared to other geometries for long span structures, as discussed above. Besides, in the case of
𝑐 = 3∕4, there is a sudden discontinuity in the efficiency of the form-found arch from an elliptical input at 𝜖 = 0.5. This
is due to faster hinge rotation in steeper geometries discussed before, which causes the intrados hinge (non-springing) of
the two-springing four hinge mechanism to approach the crown of an elliptical arch at 𝜖 = 0.4. The limit thrust-line of
the elliptical arch at these loads will then pass very close to the crown, ensuring that the resulting initial envelope of the
first generation arch has a rise over span ratio much closer to that of the input geometry resulting in a greater number of
generations and increased level of efficiency. It is therefore expected that this discontinuity will occur for elliptical arches
of all aspect ratios, but only once the limit thrust-line passes close enough to the crown. This will take place at higher
loads for shallower geometries as the hinge rotations are slower.

4 EFFECTS OF LOW-GRAVITY CONDITIONS

Under the Couplet–Heyman assumptions,1 the minimum thickness of masonry or monolithic arches of negligible tensile
strength is solely dependent on the ratio of self-weight to inertial load . Therefore, optimal arches can be found for any
gravitation field by introducing a gravitational multiplier,27 𝛼, with respect to the gravitational acceleration on Earth (i.e.
𝑔 = 9.81m/s2).
In this study, we assume that the strength of the lunar and martian gravitational fields are 0.379g and 0.166g, respec-

tively.
Figure 6 shows the results for a range of demand ratios 𝜖∕𝛼, an aspect ratio of 𝑐 = 1∕2 and different gravitational fields

corresponding to terrestrial, martian and lunar environments. As before, the efficiency of the arches is expressed in terms
of ratios of areas and tension forces at the supports. The form-found arches take into account the finite strength of themate-
rial and hence they are not strictly self-similar for 𝜖∕𝛼. However as the finite strength offset tends to be small in comparison
with the thickness of the arch, the form-found arches for any demand ratio are very much alike. Only results for semicir-
cular, parabolic and catenary inputs are presented since the elliptical inputs resulted in notoriously sub-optimal arches.
The results of Figure 6 show thematerial efficiency continuing to plateau as in Figure 4(A), however after 𝜖∕𝛼 = 0.9, the

semicircular results jump to a greater level of efficiency. The cause of this is the same as in Figure 4(C) where the thrust-
line has flattened out enough such that it passes close to the crown and the resulting envelope has a similar rise and span to
the input. This happens at a much higher loading because of the slower hinge rotations observed in shallower geometries.
In addition, the results for tension induced at the supports show an increasing level of efficiency when compared to the
circular results for high demand ratios. However this is an artefact of circular arches becoming very inefficient at these
high loads. For both material efficiency and demand on foundations, form-found arches using a parabolic input yield the
best results for arches subject to significant inertial loading. As demonstrated before for standard geometries, catenary
inputs yield better results for very small levels of inertial loading in form-found arches as well. Overall, average material
efficiencies of around 40% are observed. Similar results were obtained for other aspect ratios.
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F IGURE 6 Form-found results of material efficiency (left) and tension force (right) for a range of 𝜖∕𝛼 values. The curves are constructed
from results for 𝛼 = 1, 0.379, 0.166 corresponding to the Earth, Mars and the Moon, respectively, for 𝑐 = 1∕2

F IGURE 7 Comparison of terrestrial, martian and lunar optimal form-found arches (where 𝛼𝑔 defines the magnitude of gravitational
acceleration) for a dimensionless inertial loading 𝜖 = 0.2 (𝜖 = 𝑢𝑔∕𝑔 where 𝑢𝑔 is the ground acceleration) and a geometry tolerance of 5%

F IGURE 8 Optimal form-found arch for a dimensionless inertial loading 𝜖 = 0.2(𝜖 = 𝑢𝑔∕𝑔 where 𝑢𝑔 is the ground acceleration) with
𝛼 = 0.166 (where 𝛼𝑔 defines the magnitude of gravitational acceleration). The self-weight thrust-line offset has been taken as 10% of the
maximum thickness of the arch when forming the geometry envelope

This effects of low gravity on the thickness variation along the arch under seismic action are clearly shown in Figure 7.
This figure shows the optimal form-found arches with an internal rise of 10 m and 𝑐 = 1∕2 for a design horizontal accel-
eration of 0.2g. In the lunar case, the shape is dominated by the extreme tilting of the thrust-line. It can also be seen from
this figure that as the demand ratio increases the thickness variation throughout the arch becomes more significant. This
is especially the case in low-gravity conditions, as the finite strength offset is still very small in comparisonwith the overall
arch dimensions due to the smaller reaction forces. This may pose constructability issues in a monolithic structure due
to large stress concentrations at the pinching points. A more practical thickness distribution can be obtained by offset-
ting the self-weight thrust-line by a larger amount during the form finding process, as discussed above. As an example,
Figure 8 shows the last iteration of the form-finding algorithm when the self-weight thrust-line has been offset by 10%
of the maximum thickness of the arch. Alternatively, the limit on the permitted rise over span ratio in the form-finding
algorithm can be relaxed to allow more iterations and achieve a more rational shape as shown in Figure 9. This needs to
be further investigated with the help of finite element analysis.
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F IGURE 9 Effect of changing the geometry tolerance on the optimal form-found arch for 𝜖 = 0.2, 𝛼 = 0.166

F IGURE 10 Modelling schematic for additional
uniformly distributed mass 𝑤 [kg/m]. 𝐹ℎ,𝑖 and 𝐹𝑣,𝑖

define the inertial and self-weight forces applied at
centroid of each block; 𝑑𝑥𝑖 is the projection of each
block onto the uniformly distributed mass, 𝑤

5 STABILIZING EFFECTS OF LOOSE REGOLITH SHIELDING

It is evident from our previous discussion that the effects of low gravity are akin to amplifying the effective inertial loading
leading to larger arches. By applying additional mass over the top of the arch (loose regolith infill), vertical forces can be
increased thus reducing the ratio of horizontal to vertical loads (𝜖∕𝛼). In this way, the asymmetry of an arch’s thrust-line
will be diminished and thinner geometries can be found. Within the context of extraterrestrial constructions, and in line
with the In Situ Resource Utilization approach, loose regolith can be used as shielding to provide additional stabilising
mass. This will have the added benefit of assisting with the minimum thickness requirements for radiation protection.28
However, the additional mass provided by the regolith shielding will exert some inertial actions during seismic events

that may hamper its effectiveness and need to be accounted for. A precise consideration of the complex inertial interac-
tions and nonlinear effects associated with the response of loose regolith overburden during seismic actions will defy the
purpose of this paper, which is to use simplified procedures to identify preliminary optimal arch forms which can then
be further analysed during the detail stages of the design. This infill–arch interaction can cause both active and passive
pressures whose magnitude and direction will vary during the seismic action. However, a simplified modelling approach
is adopted herein as described below. This modelling approach aims to capture the overall effects of the regolith overbur-
den while allowing a broad screening of limiting cases and keeping the computational expense at a minimum and can
therefore be used for the quick mapping of potentially feasible solutions at a preliminary design stage examined in this
paper. In this respect, Kampas et al.24 have proposed the consideration of at least two limiting cases broadly associated
with frequent and infrequent events (e.g. serviceability and ultimate limit state). Themore frequent, low-intensity ground
motions, can be associated with the loose regolith layer remaining largely attached to the structure while the more infre-
quent event may lead to yielding and its partial collapse. Given the uncertainties involved, the mass participation of the
loose regolith shielding is treated parametrically in this study.
In order to model the additional mass of loose regolith shielding, a uniformly distributed load with potentially variable

values per block length was adopted in this paper as indicated in Figure 10.
Therefore, the additional mass attributed to each voussoir is dependent upon its projection onto the uniformly dis-

tributed load, 𝑑𝑥, and assumed to act from its centroid. This leads to Equations (2) and (3) that give the new vertical and
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F IGURE 11 Example force polygons demonstrating the influence of the inertial participance 𝛼𝑚 on the shape of the load line (shown in
black)

horizontal loads acting at the centroid of each voussoir:

𝐹𝑣,𝑖 = (𝑀𝑖 + 𝑑𝑥𝑖𝑤)𝛼𝑔 (2)

𝐹ℎ,𝑖 = (𝑀𝑖 + 𝛼𝑚𝑑𝑥𝑖𝑤)𝜖𝑔 (3)

where𝑀𝑖 is the mass of the block, 𝑑𝑥𝑖𝑤 the additional applied mass, 𝛼𝑚 the inertial contribution of the additional mass,
𝛼𝑔 the gravitational acceleration, and 𝜖𝑔 the lateral acceleration.
As the inertial contribution, quantified herein by the parameter 𝛼𝑚 introduced previously, is reduced, the load line of an

arch subjected to uniformly distributed vertical loads steepens towards the middle. This is illustrated in Figure 11, which
shows the effect of varying values of 𝛼𝑚 on the centroidal resultant forces of each voussoir of a classical parabolic arch. A
steeper load line results in the inclination of the resultant thrust forces changing at a faster rate through the arch’s length.
Consequently, the thrust-line will be less broad resulting to thinner arches.
The effects of increasing levels of uniformly distributed overburden on the efficiency of optimal form-found arches are

presented in Figure 12 for varying values of inertial contribution. Only arches with parabolic input are presented since
they are associated with the most efficient configuration. Results are presented for three different 𝜖 values and a 𝑐 = 1∕2

(Figure 7). It can be appreciated from Figure 12 that the area efficiencies tend to show an asymptotic behaviour at high
values of 𝐿. Where 𝐿 quantifies the magnitude of additional loose regolith mass, 𝑀𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙, over the mass of the arch,
𝑀𝑎𝑟𝑐ℎ:

𝐿 =
𝑀𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

𝑀𝑎𝑟𝑐ℎ
(4)

When 𝛼 = 1 there appears to be an optimal value of 𝐿 before the area begins to increase in Figure 12. However, this is
only the case for the terrestrial and martian arches, whereas the lunar arch continues to get smaller under increased 𝐿.
This shows that the overburden is more effective for higher demand ratios, 𝜖∕𝛼.
Figure 12 also shows that while the general effect of the overburden is to increase the material efficiency of the arch,

this material efficiency comes at the cost of increased tensile loads induced at the supports. As previously mentioned, the
foundations of these extraterrestrial structures are likely to be constructed from regolith with minimal tensile strength
and this may be a limiting factor for the use of additional stabilising masses. For example, applying 𝐿 = 4 and 𝛼𝑚 = 1
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F IGURE 1 2 Effects of additional distributed mass 𝐿 = 𝑀𝑎𝑑𝑑∕𝑀𝑎𝑟𝑐ℎ with inertial contribution 𝛼𝑚 on the area and foundation tension of
optimal form-found arches with 𝑐 = 1∕2

for a ground acceleration of �̈�𝑔 = 0.2g: on earth the tension will increase by over six times its original value, compared to
roughly five and four times in themartian and lunar cases, respectively. In some instances, a reduction of the tension forces
can be observed with increased additional mass, but these occur for the limit case of 𝛼𝑚 = 0.1 only. However, Figure 12
shows that for the higher levels of inertial loading that will be seen in low-gravity conditions, the tension does not increase
at the same rate as at the lower demand levels. Similar results were observed for 𝑐 = 3∕4 and 𝑐 = 1∕4.
Figure 13 shows the effects of the overburden on the forms of the optimal form-found arches previously examined in

Figure 7. The influence of the overburden is clearly seen from this figure where amore pronounced effect is evident for the
lunar case with 𝛼 = 0.166. These results also demonstrate that determining the true value of the inertial contribution, 𝛼𝑚
of the additional mass is of the utmost importance. The lower the inertial contribution, the more effective the additional
vertical loads are at allowing the thickness of the crown to reduce as the thrust-lines become less broad.

6 PRACTICAL APPLICATION AND DEM VALIDATION

6.1 Case study geometries

In order to illustrate the range of geometries that an optimal arch can take in extraterrestrial conditions, and compare
the improvements brought about by the optimization algorithm described above, a case study is discussed in this section.
This case study example covers the preliminary design of a shielding structure representing a potential storage facility
subjected to seismic loading under the extreme lunar conditions (gravitational acceleration of 0.166g). A target rise of
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F IGURE 13 Effects of additional distributed mass 𝐿 = 𝑀𝑎𝑑𝑑∕𝑀𝑎𝑟𝑐ℎ with inertial contribution 𝛼𝑚 on the form of the optimal form-found
arch (for a geometry tolerance of 5%) with aspect ratio (internal rise over span) 𝑐 = 1∕2 subject to inertial loading in varying gravitational
conditions

TABLE 1 Form-finding results for the case of 𝛼𝑚 = 0.8

Parameter Parabolic (CTA) Form-found (VTA) Reduction
Tension generated at the supports [𝑘𝑁∕𝑚] 2482.4 873.2 65%
Area [𝑚2] 399.1 212.9 47%

15 m, target span of 30 m and design level lateral acceleration of 0.2g are considered. This level of acceleration is assumed
in accordance with the observations of Oberst and Nakamura18 who compared the magnitude-recurrence relationships
for shallow moonquakes with intraplate earthquakes in Central-Eastern United States. The structure is to be constructed
from lunar regolith with density of 2.3 g/cm3 and maximum compressive strength of 4.2 MPa.26
For the demand ratio of 𝜖∕𝛼 = 1.20, Figure 6 gives the most efficient input geometry as parabolic for a rise over span

ratio, 𝑐 = 1∕2. Without any additional overburden, the minimum thickness of a CTA parabolic arch can be calculated as
𝑡∕𝑅 = 0.55397, for an internal rise of 15mthiswill correspond to a very large thickness of roughly 11.5m, thus highlighting
the necessity of optimizing the arch’s shape. As discussed before, the limit thrust line of the parabolic arch without any
additional overburden has multiple curvatures that will manifest itself into large variations in the form-found geometries
that can compromise its constructibility. As such it was decided to include a loose regolith overburden. This case study
will proceed by assuming 𝐿 = 1 (as defined previously) and a relatively conservative inertial contribution of 𝛼𝑚 = 0.8.24
The density of this loose regolith material is assumed to be the same as that of the arch structure as taken from Goulas
et al.26
The final results of the form-finding process are presented in Figure 14 and Table 1. These results clearly demonstrate

the effect of reducing the inertial contribution on the size of the form-found arch and highlight the need for rigorous
optimization studies. By assuming that the loose regolith is of the same density as the 3D-printed regolith and is distributed
uniformly across the arches span for 𝛼𝑚 = 0.8, 𝐿 = 1 corresponds to overburden thicknesses of 3.5m.
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F IGURE 14 Optimal form-found lunar arch subjected to an equivalent static inertial loading for a constant horizontal acceleration
𝜖 = 𝑢𝑔∕𝑔 = 0.2 (where 𝑢𝑔 is the ground acceleration). An additional distributed mass 𝐿 = 𝑀𝑎𝑑𝑑∕𝑀𝑎𝑟𝑐ℎ = 1 has been applied with an assumed
inertial contribution of αm = 0.8

TABLE 2 Summary of the ground-motion dataset employed

N◦ Event Station Mw Vs30 [m/s] �̈�𝒈,𝒎𝒂𝒙 [g]
1 Pawnee 03/09/2016 KAN09 5.8 396 0.046
2 Pawnee 03/09/2016 KAN14 5.8 701 0.047
3 Pawnee 03/09/2016 OK005 5.8 591 0.055
4 Pawnee 03/09/2016 OK030 5.8 448 0.057
5 Pawnee 03/09/2016 OK032 5.8 500 0.059
7 Mineral 23/08/2011 SE.NANPP 5.74 554 0.264
8 Nahanni 23/12/1985 Nahanni, NT 6.76 1700 1.340
9 Nahanni 23/12/1985 Nahanni, NT 6.76 1700 0.542
10 Nahanni 23/12/1985 Nahanni, NT 6.76 1700 0.194

6.2 Discrete element modelling and ground motion data-set

DE models were constructed in the commercial software UDEC29 using rigid blocks in conjunction with the Coulomb
slip area model at the rigid block interfaces (represented by shear and normal joint springs) to account for the regolith’s
elastic modulus in an approximate way. The friction coefficient angle was set to 90◦ with the purpose of preventing sliding
between blocks and to approximate a monolithic arch while the cohesion was set equal to 0 Pa.
Since the springs are considered to simulate the elasticity of the material while the blocks remain rigid, normal and the

shear springs with the same elastic stiffness were employed. To this end, a value of 1.9e9 Pa/m was used for the dynamic
analyses for both the shear (𝑗𝑘𝑠) and normal joint stiffness (𝑗𝑘𝑛). This value was calculated by means of the expressions
provided by DeJong30 and tested by DeJong and Vibert31 and Makris et al.32 It should be noted that while Makris et al.’s
model represents a trilith, DeJong andDimitrakopulos33 have shown that a trilith can approximate the response of arches.
A damping ratio of 𝜉 = 100% of the critical value at 𝜔𝑒

√
2 was adopted assuming zero mass damping at a centre fre-

quency of 𝑓𝑚𝑖𝑛 =256 cycles/s,29 where 𝜔𝑒 is the edge impact frequency as defined in DeJong30 to avoid unwanted under-
damped behaviour. On this basis, damping coefficients whichwere calculated using the expressions proposed byDeJong30
were found byMakris et al.32 to provide better results comparedwith experimental observations. It is recognized, however,
that given the variety of block dimensions, further studies are needed in order to provide full experimental support for
the damping models adopted. Those parameters were calculated for a mean size of each voussoir. Additionally, the values
found by Goulas et al.26 for the Young’s modulus 𝐸 of sintered regolith (without additives) of 287.3 MPa and its density 𝜌
= 2300 kg/m3 were adopted.
In order to perform the response history analyses, a set of 10 ground-motions were selected as summarized in Table 2.

As mentioned before, Oberst and Nakamura18 first considered the concept of seismic hazard and risk for a potential lunar
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F IGURE 15 Typical collapse mechanism of
the DEMmodel of the varying thickness (VTA)
arch under consideration

base. They discovered similar seismicity rates between the shallowmoonquakes and the intraplate earthquakes on Earth.
Importantly, according to their estimations, made on the basis of the occurrence rate, a potential lunar base constructed
at a random locationmay be exposed to a shallowmoonquake of magnitude above 4.5 Mwithin a distance of 100 km once
in 400 years. In this context, four recordings, detected at the vast area of Central and Eastern North-America, have been
included in the dataset (N◦s 7–10 in Table 2). Furthermore, six ground motions (N◦s 1–6 in Table 2) recorded during a
strong earthquake occurred at Pawnee, Oklahoma in 2016, are also included. All the above events, are characterized by
magnitude M > 5.5 and epicentral distance R < 90 km. The average shear velocities of the recordings is higher than 360
m/s, which indicates stiff and rocky soils (e.g. type A and B according to Eurocode 834 provisions). All the pertinent details
are contained in Table 2.

6.3 Analysis and results

TheCloud to IDAprocedure put forward byMiano et al.35 was used for the estimation of the structural fragilities associated
with the initiation of fracture in the regolith arches examined with the peak ground acceleration (�̈�𝑔,𝑚𝑎𝑥) as the intensity
measure (𝐼𝑀). The Cloud to IDAmethodology hinges around the definition of a critical demand to capacity ratio (DCR) as
the performance variable that serves to identify the onset of a desired limit state. Thismethod limits the need for significant
number of runs, which can become prohibitive in the case of DEM analyses, as well as keeping the amount of scaling to
a minimum, which in our case is particularly welcomed given the notorious uncertainties associated with lunar ground
motion definitions. Therefore, the demand to capacity ratio (𝐷𝐶𝑅𝐿𝑆) for the limit state (𝐿𝑆) of interest is:

𝐷𝐶𝑅𝐿𝑆 =
𝐷𝑗𝑙

𝐶𝑗𝑙(𝐿𝑆)
(5)

where 𝐷𝑗𝑙 is the demand evaluated for the 𝑗th component of the 𝑙th mechanism, and 𝐶𝑗𝑙(𝐿𝑆) is the limit state capacity
for the 𝑗𝑡ℎ component of the 𝑙𝑡ℎ mechanism, and 𝐷𝐶𝑅𝐿𝑆 is always equal to unity at the onset of 𝐿𝑆. For the present case
study, and in attention to the criticality of the off-Earth structure assumed, the𝐷𝐶𝑅 is evaluated for limit states associated
with the onset of cracking at any given point on the arch. This limit is associated with a strain of 0.15% in the regolith.26
This strain was calculated on the basis of the hinge openings estimated from the Udec results. Moreover, in order to keep
memory and data storage demandsmanageable, a single point of evaluationwas used throughout. To this end, preliminary
runs indicated that the four-hingemechanism presented in Figure 15 was themost prevalent and that the higher demands
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F IGURE 16 Comparison of the seismic response of constant thickness (CTA) and varying thickness (VTA) arches

were typically concentrated at the second or third hinges (at an angle of 64.8◦ and 180◦, respectively). Therefore all peak
deformation comparisons were made with reference to these regions alone. Figure 15 also offers some cross-validation
between the results of the limit-thrust line analysis framework adopted and the DEM since the number and location of
plastic hinges is consistent.
Figure 16 presents and compares the fragility curves obtained for the VTA and CTA arches together with their deformed

shape at the time of maximum demand. This figure demonstrates that CTA arches, dimensioned to have minimum con-
stant thickness have a substantial conservativeness associated with their seismic response reaching a conditional proba-
bility of exceedance of the 𝐿𝑆 of only 𝑃 = 0.13 for the design intensity of �̈�𝑔,𝑚𝑎𝑥 = 0.2𝑔 (associated with a LS exceedance
probability of 𝑃 = 0.79). This large level of over-design is critical in the context of space exploration with limited availabil-
ity of resources and critical energy demands. By contrast, the 𝐼𝑀 associatedwith themean probability of exceedance of the
𝐿𝑆 for the VTA arch is �̈�𝑔,𝑚𝑎𝑥 = 0.125g. This value is noticeably smaller than the 0.2 g assumed for its design, attributable
to the rather stringent (material failure) 𝐿𝑆 assumed that does not always correspond to the formation of the full mecha-
nism (geometric instability). Although comparisons between different modelling approaches are always complicated by
the diversity of assumptions, this is a feature that should be the topic of further studies improving on the optimal VTA
found by, for example, increasing the thickness in the pinching regions of the VTA informed by finite element investi-
gations. It is also worth noting, that the variability of the response in VTA arches is reduced in comparison with their
CTA counterparts, with coefficients of variation of 47% and 64%, respectively. Although it can be argued that an impor-
tant part of this variability can be reduced by an ad hoc selection of ground-motion intensity measures, the comparative
improvement of VTAs relative to CTAs hints to a better control of their seismic response produced by the optimization of
their geometry.

7 CONCLUSIONS

This paper has investigated the optimal form of arches subjected to in-plane seismic loading under normal and extreme
gravitational conditions. Under the Couplet–Heyman’s assumptions, the stability of arches subject to inertial loading is
dependent upon the ratio of vertical (self-weight) and horizontal (inertial) forces present in the structure. Hence, unless
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finite strength is taken into account, all arches are scalable. This means that the results and methods present herein have
important implications for terrestrial applications as well, especially those where material efficiency is of utmost concern.
A form-finding algorithm has been implemented to produce optimal geometries for concurrent gravity and seismic

loading. Importantly, we found that the output geometry is dependent upon the standard geometry ofminimum thickness
used as an input. This has important implications for the use of previously proposed optimization methods where more
arbitrary selections of initial inputs were assumed. It was also shown that, similar to standard geometries, a parabolic
input generally produces more optimal arches both in terms of material usage and tensile loads induced at the supports.
Parabolic input achieves at least a 50% reduction in both material usage and tensile load under high levels of seismic
loading for all aspect ratios considered and the material savings can be as high as 90% for lower seismic intensities.
The effect of low gravity is to effectively amplify the demand exerted on the structure by reducing its self-weight, which

acts as the stabilising force when an arch is subject to lateral loads. This makes the design of structures to resist lateral
loads in lunar environments the critical scenario as the strength of the gravitational field is approximately 17% of that on
Earth. However, due to the aforementioned scalability of results, the comparison between different geometries and aspect
ratios remains valid.
The use of additional loose regolith placed over the top of the structure to counteract the loss of self-weight due to

low-gravity and to reach to the minimum thickness for radiation protection was explored. Our results show that the effec-
tiveness of the overburden is heavily dependent upon the assumed inertial contribution of the additional mass revealing
the need for a detailed design consideration. Although generally thinner arches are obtained when overburden is added,
the additional mass can also lead to increased levels of tension induced at the foundations.
A case study has been presented where the response of a VTAs of optimal geometry is compared against its minimum

constant thickness (CTA) counterpart by means of DEM and using the peak ground acceleration as 𝐼𝑀 and a material
failure strain level as 𝐷𝑀. The results of the response history analyses were summarized in fragility functions that high-
lighted the important over-conservativeness of CTA. By contrast, the VTA exhibited a higher probability of exceedance
of 𝑃 = 0.79 for the design-level 𝐼𝑀 = 0.2g. Although this result point towards the need for geometry improvements that
take into account the potential for localized stress concentrations, the comparatively low variability in the response of the
VTA in comparison with the CTA hint to an improved control on their dynamic response under seismic action.
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