8 research outputs found

    Mapping species richness of plant families in European vegetation

    Get PDF
    Aims: Biodiversity is traditionally studied mostly at the species level, but biogeographical and macroecological studies at higher taxonomic levels can provide valuable insights into the evolutionary processes at large spatial scales. Our aim was to assess the representation of vascular plant families within different vegetation formations across Europe. Location: Europe. Methods: We used a data set of 816,005 vegetation plots from the European Vegetation Archive (EVA). For each plot, we calculated the relative species richness of each plant family as the number of species belonging to that family divided by the total number of species. We mapped the relative species richness, averaged across all plots in 50 km × 50 km grid cells, for each family and broad habitat groups: forests, grasslands, scrub and wetlands. We also calculated the absolute species richness and the Shannon diversity index for each family. Results: We produced 522 maps of mean relative species richness for a total of 152 vascular plant families occurring in forests, grasslands, scrub and wetlands. We found distinct spatial patterns for many combinations of families and habitat groups. The resulting series of 522 maps is freely available, both as images and GIS layers. Conclusions: The distinct spatial patterns revealed in the maps suggest that the relative species richness of plant families at the community level reflects the evolutionary history of individual families. We believe that the maps and associated data can inspire further biogeographical and macroecological studies and strengthen the ongoing integration of phylogenetic, functional and taxonomic diversity concepts.MV, IA, JPC, ZL, IK, AJ and MC were funded by the Czech Science Foundation, programme EXPRO (project no. 19-28491X); JDi by the Czech Science Foundation (18-02773S); IB and JAC by the Basque Government (IT936-16); AČ by the Slovenian Research Agency (ARRS, P1-0236); AK by the National Research Foundation of Ukraine (project no. 2020.01/0140); JƠ by the Slovak Research and Development Agency (APVV 16-0431); KV by the National Science Fund (Contract DCOST 01/7/19.10.2018)

    Using the Sph Method for Modeling the Crystallization Process of Aluminum Alloys

    Full text link
    The purpose of the study was to obtain castings with increased mechanical properties by low-pressure casting using excess pressure on the crystallized casting. The simulation of the process of filling and crystallization of prototypes using the SPH method was carried out. The studies were carried out on a modernized low-pressure injection molding machine model U8261. Prototypes were obtained from AK7ch alloy, special attention is paid to interfacial interaction and intensification of the heat transfer process due to the application of excess pressure. Based on the data obtained, it was found that during crystallization under excessive pressure there is a supercooling effect that reduces the casting solidification time. The use of the SPH method for modeling foundry processes has shown a high level of reliability and requires further development

    sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots

    Get PDF
    Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called 'sPlot', compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01-40,000 m(2). Time period and grain 1888-2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked

    sPlotOpen:an environmentally balanced, open-access, global dataset of vegetation plots

    No full text
    Abstract Motivation: Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained: Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain: Global, 0.01–40,000 mÂČ. Time period and grain: 1888–2015, recording dates. Major taxa and level of measurement: 42,677 vascular plant taxa, plot-level records. Software format: Three main matrices (.csv), relationally linked

    sPlot:a new tool for global vegetation analyses

    No full text
    Abstract Aims: Vegetation‐plot records provide information on the presence and cover or abundance of plants co‐occurring in the same community. Vegetation‐plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community‐weighted means and variances of traits using gap‐filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community‐weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale
    corecore