412 research outputs found

    Cracking the “Sepsis” Code: Assessing Time Series Nature of EHR data, and Using Deep Learning for Early Sepsis Prediction

    Get PDF
    On a yearly basis, sepsis costs US hospitals more than any other health condition. A majority of patients who suffer from sepsis are not diagnosed at the time of admission. Early detection and antibiotic treatment of sepsis are vital to improve outcomes for these patients, as each hour of delayed treatment is associated with increased mortality. In this study our goal is to predict sepsis 12 hours before its diagnosis using vitals and blood tests routinely taken in the ICU. We have investigated the performance of several machine learning algorithms including XGBoost, CNN, CNN-LSTM and CNN-XGBoost. Contrary to our expectations, XGBoost outperforms all of the sequential models and yields the best hour-by-hour prediction, perhaps due to the way we imputed missing values, losing signal that relates to the time-series nature of the EHR data. We added feature engineering to detect change points in tests and vitals, resulting in 5% improvement in XGBoost. Our team, USF-Sepsis-Phys, achieved a utility score of 0.22 (untuned threshold) and an average of the three reported AUCs (test sets A, B, C) of 0.82. As expected with this AUC, the same model with tuned threshold (not run in the PhysioNet challenge) performed significantly better, as evaluated with 3-fold cross-validation of the entire PhyisoNet training set

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    U.S. Billion-ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Get PDF
    The Report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of “potential” biomass within the contiguous United States based on numerous assumptions about current and future inventory and production capacity, availability, and technology. In the 2005 BTS, a strategic analysis was undertaken to determine if U.S. agriculture and forest resources have the capability to potentially produce at least one billion dry tons of biomass annually, in a sustainable manner—enough to displace approximately 30% of the country’s present petroleum consumption. To ensure reasonable confidence in the study results, an effort was made to use relatively conservative assumptions. However, for both agriculture and forestry, the resource potential was not restricted by price. That is, all identified biomass was potentially available, even though some potential feedstock would more than likely be too expensive to actually be economically available. In addition to updating the 2005 study, this report attempts to address a number of its shortcoming

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management
    corecore