180 research outputs found

    A Joint Junior Recital

    Get PDF
    This is the program for the joint junior recital of tenor Ron Walker, baritone George Stevenson, pianist Lynda Goff, and baritone Arthur Morris. Dian Ray accompanied Walker; Peggy Gullage accompanied Stevenson; and Dora Ann King accompanied Morris. The recital took place on May 7, 1964

    Configuration and Dynamics of the Laurentide Ice Sheet During the Late Wisconsin Maximum

    Get PDF
    Prior to 1943 the Laurentide Ice Sheet was considered to have three major domes centered in Keewatin, Labrador, and Patricia (TYRRELL, 1898 a, b; 1913). FLINT (1943) argued that these centres were of only local and temporary importance and favoured a single-domed ice sheet. Despite the lack of supporting geological evidence, and despite the proposition of a Foxe Dome in the interim (IVES and ANDREWS, 1963), the single-dome concept was not seriously challenged until the late 1970's and, in fact, is still strenuously supported (HUGHES era/., 1977 ; DENTON and HUGHES, 1981). This paper extends and modifies recent conclusions that the Laurentide Ice Sheet had more than one dome at the Late Wisconsin maximum. We propose a model incorporating five domes (M'Clintock, Foxe, Labrador, Hudson, and (?) Caribou) based on the position of ice divides, ice flow patterns, drift composition, late-glacial features, postglacial isostatic recovery and free-air gravity anomalies. Our Labrador and Hudson domes closely correspond to Tyrrell's Labradorean and Patrician ice sheets; our Caribou and M'Clintock domes together with the Franklin Ice Complex over the Queen Elizabeth Islands north of the Laurentide Ice Sheet, correspond to Tyrrell's original Keewatin Ice Sheet. The style of glaciation of the Foxe Basin region was not known to Tyrrell, but our reconstruction of the Foxe Dome is in close agreement with the original proposal of Ives and Andrews. Like Tyrrell, our reconstruction is based on field evidence obtained through extensive mapping; the single dome model continues to be unsupported by geological data.Avant 1943, on croyait que l'inlandsis laurentidien était constitué de trois dômes principaux centrés sur le Keewatin, le Labrador et le District de Patricia (TYRRELL, 1898 a et b et 1913). FLINT (1943) a plaidé que ces centres avaient seulement une importance locale et temporaire et il a plutôt favorisé le concept d'un inlandsis à dôme unique. Malgré l'absence de preuves géologiques, et malgré la proposition subséquente de l'existence du Dôme de Foxe (IVES et ANDREWS, 1963), le concept du dôme unique n'a pas été sérieusement remis en question avant la fin des années 70. Il est d'ailleurs encore vigoureusement appuyé par certains (HUGHES et al., 1977; DENTON et HUGHES, 1981). Cet article complète et modifie des travaux récents qui affirment que l'inlandsis laurentidien était en réalité constitué de plus d'un dôme au cours du pléniglaciaire du Wisconsinien supérieur. Nous proposons un modèle, basé sur la position des lignes de partage des glaces, les patrons de l'écoulement glaciaire, la composition des sédiments glaciaires, les formes tardi-glaciaires, les patrons du relèvement isostatique postglaciaire et les anomalies gravimétriques à l'air libre, qui fait appel à cinq dômes (ceux de M'Clintock, de Foxe, du Labrador, d'Hudson et (?) de Caribou). Nos dômes du Labrador et d'Hudson correspondent étroitement aux calottes labradoriennes et patriciennes de Tyrrell. Les dômes de Caribou et de M'Clintock avec le Complexe glaciaire de Franklin sur les îles de la Reine-Élizabeth, au nord de la calotte laurentidienne, correspondent à la calotte originelle du Keewatin de Tyrrell. Le style de glaciation de la région du bassin de Foxe n'était pas connu de Tyrrell, mais notre reconstitution du Dôme de Foxe est en accord avec la proposition initiale de Ives et Andrews

    North American Deglacial Marine- and Lake-Limit Surfaces

    Get PDF
    The deglacial marine-limit surface is a virtual topography that shows the increase of elevation since deglaciation. The currently available set of marine-limit elevations (n = 929), about three times the number available in the most recent synthesis, allows a fairly detailed rendering of the surface across most of glaciated North America and Greenland. Certain large glacial lake-limit surfaces are analogous to marine-limit surfaces, except that their gradients were not dampened by eustatic sea-level rise. Collectively the surfaces reflect both gross ice-sheet geometry and regional to local rates of ice-marginal recession. As such, they are replication targets for glacioisostatic modelling that are supplementary to and more continuously distributed than relative sea-level curves.La surface de la limite marine durant la déglaciation est une topographie virtuelle illustrant l’augmentation des altitudes depuis la déglaciation. Les données disponibles sur l’altitude des limites marines (n = 929), trois fois plus nombreuses que celles publiées dans les synthèses récentes, permettent d’obtenir une surface plus détaillée de la région glaciaire de l’Amérique du Nord et du Groenland. Certaines surfaces lacustres de grande superficie sont similaires aux surfaces marines, sauf que leurs gradients ne sont pas affectés par la remontée du niveau de la mer. Ces surfaces reflètent collectivement la géométrie de la calotte glaciaire ainsi que les taux régionaux et locaux de recul des marges glaciaires. En conséquence, elles constitutent d’excellentes cibles additionnelles pour la modélisation glacio-isostatique, étant mieux distribuées que les courbes du niveau marin relatif

    Simulation Evaluation of Equivalent Vision Technologies for Aerospace Operations

    Get PDF
    A fixed-based simulation experiment was conducted in NASA Langley Research Center s Integration Flight Deck simulator to investigate enabling technologies for equivalent visual operations (EVO) in the emerging Next Generation Air Transportation System operating environment. EVO implies the capability to achieve or even improve on the safety of current-day Visual Flight Rules (VFR) operations, maintain the operational tempos of VFR, and perhaps even retain VFR procedures - all independent of the actual weather and visibility conditions. Twenty-four air transport-rated pilots evaluated the use of Synthetic/Enhanced Vision Systems (S/EVS) and eXternal Vision Systems (XVS) technologies as enabling technologies for future all-weather operations. The experimental objectives were to determine the feasibility of XVS/SVS/EVS to provide for all weather (visibility) landing capability without the need (or ability) for a visual approach segment and to determine the interaction of XVS/EVS and peripheral vision cues for terminal area and surface operations. Another key element of the testing investigated the pilot's awareness and reaction to non-normal events (i.e., failure conditions) that were unexpectedly introduced into the experiment. These non-normal runs served as critical determinants in the underlying safety of all-weather operations. Experimental data from this test are cast into performance-based approach and landing standards which might establish a basis for future all-weather landing operations. Glideslope tracking performance appears to have improved with the elimination of the approach visual segment. This improvement can most likely be attributed to the fact that the pilots didn't have to simultaneously perform glideslope corrections and find required visual landing references in order to continue a landing. Lateral tracking performance was excellent regardless of the display concept being evaluated or whether or not there were peripheral cues in the side window. Although workload ratings were significantly less when peripheral cues were present compared to when there were none, these differences appear to be operationally inconsequential. Larger display concepts tested in this experiment showed significant situation awareness (SA) improvements and workload reductions compared to smaller display concepts. With a fixed display size, a color display was more influential in SA and workload ratings than a collimated display

    Flight Test Evaluation of Situation Awareness Benefits of Integrated Synthetic Vision System Technology f or Commercial Aircraft

    Get PDF
    Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft

    Motion-Base Simulator Evaluation of an Aircraft Using an External Vision System

    Get PDF
    Twelve air transport-rated pilots participated as subjects in a motion-base simulation experiment to evaluate the use of eXternal Vision Systems (XVS) as enabling technologies for future supersonic aircraft without forward facing windows. Three head-up flight display concepts were evaluated -a monochromatic, collimated Head-up Display (HUD) and a color, non-collimated XVS display with a field-of-view (FOV) equal to and also, one significantly larger than the collimated HUD. Approach, landing, departure, and surface operations were conducted. Additionally, the apparent angle-of-attack (AOA) was varied (high/low) to investigate the vertical field-of-view display requirements and peripheral, side window visibility was experimentally varied. The data showed that lateral approach tracking performance and lateral landing position were excellent regardless of AOA, display FOV, display collimation or whether peripheral cues were present. However, the data showed glide slope approach tracking appears to be affected by display size (i.e., FOV) and collimation. The monochrome, collimated HUD and color, uncollimated XVS with Full FOV display had (statistically equivalent) glide path performance improvements over the XVS with HUD FOV display. Approach path performance results indicated that collimation may not be a requirement for an XVS display if the XVS display is large enough and employs color. Subjective assessments of mental workload and situation awareness also indicated that an uncollimated XVS display may be feasible. Motion cueing appears to have improved localizer tracking and touchdown sink rate across all displays

    Multi-Dimensionality of Synthetic Vision Cockpit Displays: Prevention of Controlled-Flight-Into-Terrain

    Get PDF
    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results showed the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed

    Latency in Visionic Systems: Test Methods and Requirements

    Get PDF
    A visionics device creates a pictorial representation of the external scene for the pilot. The ultimate objective of these systems may be to electronically generate a form of Visual Meteorological Conditions (VMC) to eliminate weather or time-of-day as an operational constraint and provide enhancement over actual visual conditions where eye-limiting resolution may be a limiting factor. Empirical evidence has shown that the total system delays or latencies including the imaging sensors and display systems, can critically degrade their utility, usability, and acceptability. Definitions and measurement techniques are offered herein as common test and evaluation methods for latency testing in visionics device applications. Based upon available data, very different latency requirements are indicated based upon the piloting task, the role in which the visionics device is used in this task, and the characteristics of the visionics cockpit display device including its resolution, field-of-regard, and field-of-view. The least stringent latency requirements will involve Head-Up Display (HUD) applications, where the visionics imagery provides situational information as a supplement to symbology guidance and command information. Conversely, the visionics system latency requirement for a large field-of-view Head-Worn Display application, providing a Virtual-VMC capability from which the pilot will derive visual guidance, will be the most stringent, having a value as low as 20 msec

    Synthetic Vision Enhanced Surface Operations and Flight Procedures Rehearsal Tool

    Get PDF
    Limited visibility has been cited as predominant causal factor for both Controlled-Flight-Into-Terrain (CFIT) and runway incursion accidents. NASA is conducting research and development of Synthetic Vision Systems (SVS) technologies which may potentially mitigate low visibility conditions as a causal factor to these accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Two experimental evaluation studies were performed to determine the efficacy of two concepts: 1) head-worn display application of SVS technology to enhance transport aircraft surface operations, and 2) three-dimensional SVS electronic flight bag display concept for flight plan preview, mission rehearsal and controller-pilot data link communications interface of flight procedures. In the surface operation study, pilots evaluated two display devices and four display modes during taxi under unlimited and CAT II visibility conditions. In the mission rehearsal study, pilots flew approaches and departures in an operationally-challenged airport environment, including CFIT scenarios. Performance using the SVS concepts was compared to traditional baseline displays with paper charts only or EFB information. In general, the studies evince the significant situation awareness and enhanced operational capabilities afforded from these advanced SVS display concepts. The experimental results and conclusions from these studies are discussed along with future directions
    • …
    corecore