

# Article

"North American Deglacial Marine- and Lake-Limit Surfaces"

Arthur S. Dyke, Lynda A. Dredge et Douglas A. Hodgson *Géographie physique et Quaternaire*, vol. 59, n°2-3, 2005, p. 155-185.

Pour citer cet article, utiliser l'information suivante :

URI: http://id.erudit.org/iderudit/014753ar

DOI: 10.7202/014753ar

Note : les règles d'écriture des références bibliographiques peuvent varier selon les différents domaines du savoir.

Ce document est protégé par la loi sur le droit d'auteur. L'utilisation des services d'Érudit (y compris la reproduction) est assujettie à sa politique d'utilisation que vous pouvez consulter à l'URI https://apropos.erudit.org/fr/usagers/politique-dutilisation/

*Érudit* est un consortium interuniversitaire sans but lucratif composé de l'Université de Montréal, l'Université Laval et l'Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. *Érudit* offre des services d'édition numérique de documents scientifiques depuis 1998.

Pour communiquer avec les responsables d'Érudit : info@erudit.org

# NORTH AMERICAN DEGLACIAL MARINE- AND LAKE-LIMIT SURFACES\*

Arthur S. DYKE\*\*, Lynda A. DREDGE and Douglas A. HODGSON; Geological Survey of Canada, Natural Resources Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada.

ABSTRACT The deglacial marine-limit surface is a virtual topography that shows the increase of elevation since deglaciation. The currently available set of marine-limit elevations (n = 929), about three times the number available in the most recent synthesis, allows a fairly detailed rendering of the surface across most of glaciated North America and Greenland. Certain large glacial lake-limit surfaces are analogous to marine-limit surfaces, except that their gradients were not dampened by eustatic sea-level rise. Collectively the surfaces reflect both gross ice-sheet geometry and regional to local rates of ice-marginal recession. As such, they are replication targets for glacioisostatic modelling that are supplementary to and more continuously distributed than relative sea-level curves.

RÉSUMÉ *Limites des surfaces marines et lacustres de déglaciation en Amérique du Nord.* La surface de la limite marine durant la déglaciation est une topographie virtuelle illustrant l'augmentation des altitudes depuis la déglaciation. Les données disponibles sur l'altitude des limites marines (n = 929), trois fois plus nombreuses que celles publiées dans les synthèses récentes, permettent d'obtenir une surface plus détaillée de la région glaciaire de l'Amérique du Nord et du Groenland. Certaines surfaces lacustres de grande superficie sont similaires aux surfaces marines, sauf que leurs gradients ne sont pas affectés par la remontée du niveau de la mer. Ces surfaces reflètent collectivement la géométrie de la calotte glaciaire ainsi que les taux régionaux et locaux de recul des marges glaciaires. En conséquence, elles constitutent d'excellentes cibles additionnelles pour la modélisation glacio-isostatique, étant mieux distribuées que les courbes du niveau marin relatif.

Manuscrit reçu le 4 juillet 2005 ; manuscrit révisé accepté le 12 avril 2006 (publié le 1er trimestre 2007)

<sup>\*</sup> Geological Survey of Canada contribution number 2005774

<sup>\*\*</sup> E-mail address: adyke@nrcan.gc.ca

# INTRODUCTION

The mapping and altimetry of raised shorelines, both marine and lacustrine, have been standard components of Quaternary studies in glaciated North America since their beginning. The highest shorelines have received particular attention. Several regional to continental summaries of data have appeared as these data became increasingly available and better understood in terms of ice-sheet geometry. However, thirty-five years have now lapsed since the last continental synthesis (Andrews, 1972) and hundreds of additional measurements, about two-thirds of the data, are available. Assembling of these data is not a simple task, because authors rarely report precise locations of measured features and they commonly plot data on maps at scales that make it difficult or impossible to derive accurate co-ordinates. Nevertheless, this paper presents a reasonably complete inventory of available measurements (Appendix), a more detailed and better constrained contour map of marine- and lake-limit elevations, and an interpretation of the map as a reflection of the history of deglaciation. The map, and particularly the primary data that are contoured, should be useful replication targets for glacioisostatic rebound modelling. Some basic concepts are reviewed before presenting and interpreting the marine-limit and lake-limit data.

# BACKGROUND

# MARINE LIMITS

A marine limit, as used here, is the highest position (latitude, longitude and elevation) reached by the postglacial sea at a site, the elevation being measured with respect to present sea level (Andrews, 1970a). The Earth's crust in heavily glaciated regions was strongly depressed by its load of thick ice, by approximately one-third the ice thickness. Depression extended beyond the ice margin due to crustal stiffness. Although global sea level was lowered during the last glaciation by about 120 m (Fairbanks, 1989; Clark and Mix, 2000), the beds of large ice sheets were depressed by much more than that amount a short distance inside of the ice-sheet limits. Consequently, the sea flooded the depressed areas upon deglaciation. However, crustal uplift due to ice-load removal exceeded global (eustatic) sea-level rise in most areas thereafter, thus causing relative sea level to fall. Therefore, with few exceptions in North America and Greenland, the marine limit is the local position of the sea surface at the time of deglaciation of a site. Hence, the marine limit does not form a synchronous shoreline at a continental or even at a regional scale. Rather, it varies in age almost as widely as does the timing of deglaciation. Known marine-limit shoreline features in North America thus range in age from about 14 500 <sup>14</sup>C BP to about 4000 <sup>14</sup>C BP (Dyke, 2004a).

Marine-limit ages do not span the full range of postglacial time. Where deglaciation occurred shortly after the last glacial maximum, crustal uplift initially caused emergence (Fig. 1, curves C, H, J). However, the net postglacial (eustatic) sealevel rise (*ca.* 120 m; Fig. 1, curve B) exceeded that initial emergence, leaving these earliest deglacial shorelines below present sea level just inboard of the glacial limit. There are thus no postglacial shorelines higher than present sea level in the area from New Jersey to the Atlantic coast of Nova Scotia, where deglaciation occurred between 18 000 and 14 500 <sup>14</sup>C BP. Similarly, all postglacial shorelines apparently are below present sea level in the area between the Yukon coast and western Amundsen Gulf, where deglaciation occurred between 18 000 and 12 000 <sup>14</sup>C BP. Areas deglaciated after these times have



FIGURE 1. The relationship between the present elevation of a shoreline formed at the time of deglaciation and the relative sea-level history of a site. Where the deglacial shoreline is above present sea level, it is referred to as the marine limit. Shown are approximate (Dyke, unpublished relative sea-level database) and hypothetical (dashed lines) relative sea-level curves for (P) Poste-de-la-Baleine, southeast Hudson Bay, at the postglacial uplift centre, and a sequence of curves for sites progressively closer to the limit of glaciation (less isostatically depressed): (L) Lac Saint-Jean, Québec, (N) St.Anthony, Newfoundland, (PM) Portland, Maine, (S) St. John's, New Brunswick, (PE) northwestern Prince Edward Island, (H) Halifax, Nova Scotia, (M) Boston, Massachusetts, (C) southern Connecticut, (J) New Jersey, and (B) Barbados (Fairbanks, 1989). Relative sea-level rise at Halifax during the last 7000 years has exceeded the eustatic sea-level rise at Barbados because of crustal subsidence due to collapse of the glacioisostatic forebulge, which migrates inward as the radius of the area of postglacial uplift shrinks.

Relation entre l'altitude actuelle de la ligne de rivage formée au cours de la déglaciation et l'historique du niveau marin relatif d'un site. Dans les cas où le trait de côte durant la déglaciation est au-dessus du niveau marin actuel, on y réfère comme étant la limite marine. Les courbes du niveau marin relatif illustrées sont soit approximatives (Dyke, base de données non publiée du niveau marin relatif), soit hypothétiques (lignes pointillées) pour (P) Poste-de-la-Baleine, le sud-est de la Baie d'Hudson, au centre du soulèvement post-glaciaire, et pour une séquence de courbes pour des sites progressivement plus proches de la limite glaciaire (moins déprimées isostatiquement) : (L) Lac Saint-Jean, Québec, (N) St. Anthony, Terre-Neuve, (PM) Portland, Maine, (S) St. John's, Nouveau-Brunswick, (PE) nord-ouest de l'Île-du-Prince-Édouard, (H) Halifax, Nouvelle-Écosse, (M) Boston, Massachussetts, (C) sud du Connecticut, (J) New Jersey et (B) Barbade (Fairbanks, 1989). raised shorelines (Fig. 1, curves M and higher, except for H), because crustal depression, hence rebound, was larger toward the ice-sheet centre and postglacial eustatic sea-level rise (Fig. 1, curve B) was less the later the date of deglaciation.

A marine-limit elevation can be measured only where it is recorded by a shoreline feature, such as a delta, a beach, or an upper limit of wave erosion. Thus, in many places the position of the marine-limit shoreline is undefined, as is typical of steep rocky slopes. Probably the chief source of error in our current compilation of marine-limit elevations is the misinterpretation of a high shoreline feature in an area as a marine limit, where the true limit lies higher but may be weak or not detectible. It is also possible to overestimate marine-limit elevations, as where marine sediments or fossils are glacially thrust or redeposited above the contemporaneous sea level. Note that our definition of marine limit differs from some earlier ones, which, for example, define it as the "highest evidence in the form of a marine/littoral deposit or erosional form, such as a wave-cut terrace, reached by the sea in areas affected by glacioisostatic loading and unloading ... " (Andrews, 1973), because we wish to emphasize that the highest "evidence" does not necessarily represent the true marine limit. Fortunately, many marine-limit shoreline features are unambiguous, such as ice-contact deltas (built at the receding glacier margin and graded to sea level of the time) and outwash sediment or meltwater channels that terminate at a raised beach. Andrews (1970a) provides a discussion of criteria for recognizing the marine limit in the field as do many regional geological reports. Because the marine limit is a fundamental and powerfully informative feature of regional Quaternary geology, numerous investigators have focussed on properly identifying and surveying it and we consequently now have a large body of information pertaining to it.

The known exceptions, where marine inundation occurred after, rather than precisely at the time of, deglaciation in Canada (see above), are as follows: (1) In James Bay and along the south shore of Hudson Bay, the ice front retreated northward in glacial Lake Agassiz-Ojibway to a position north of the subsequent marine-limit shoreline. When the sea later flooded in from the north, it thus formed the marine-limit shoreline synchronously across the entire southern part of Hudson basin (Dredge and Cowan, 1989; Veillette, 1994; Clarke et al., 2004; Dyke, 2004a). (2) Similarly, in the St. Lawrence and Ottawa valleys the ice front retreated northward in a proglacial lake. When the sea flooded in from the Gulf of St. Lawrence, it formed a synchronous shoreline south of the contemporaneous ice front (Occhietti et al., 2001). (3) On the Queen Charlotte Islands of British Columbia, deglacial shorelines are far below present sea level. The sea then rose from -150 m to a maximum of about 16 m elevation well after deglaciation (Clague et al., 1982; Clague, 1989; Josenhans et al., 1997). Relative sea level has subsequently fallen due to tectonic, as opposed to glacioisostatic, uplift (Clague et al., 1982). The Queen Charlotte Islands marine-limit data are not considered here, because they are not of deglacial age. The Hudson Bay and St. Lawrence-Ottawa data are shown, because marine-limit shorelines formed there within a century or two after deglaciation. Nevertheless, in these two regions where the marine limit forms a synchronous shoreline, the marine-limit surface is steeper than it would have been had it formed diachronously.

Isolines or profiles drawn through marine-limit elevations define a virtual topography, which we here call the marine-limit surface (Fig. 2). That surface is everywhere a direct measure of the net change of elevation since deglaciation, regardless of whether a site is at the coast, inland, or offshore. The surface is the net result of two opposing variables that determine relative sea-level history: (1) the amount of depression of Earth's crust by the ice sheets during the last glaciation, and (2) the amount of uplift (emergence plus eustatic sea-level rise) that occurred prior to deglaciation. The depression varied spatially from nil to an order of 10<sup>3</sup> m, being about one-third of ice thickness. Postglacial emergence was initially rapid, with a half-time of 1000-2000 years at most sites (Dyke and Peltier, 2000). Therefore, the marine-limit surface reflects both gross ice-sheet geometry in its overall form, and the rates of ice recession in its details (Fig. 2). Note on this figure that the marine-limit gradient is always less than the gradient of any contemporaneous shoreline in its vicinity although it approaches the shoreline gradient as the rate of ice recession increases, as shown for the interval 9000 to 8000 BP. When ice recession is relatively slow, as shown for the interval 11 000 to 10 000 BP, the marine-limit surface dips in the direction opposite to that of the shorelines. This is referred to as a negative marine-limit gradient (dipping toward the ice-load centre), all others being positive or zero. Had the ice margin readvanced between 11 000 and 10 000 BP to the position shown by the open vertical bar on the 10 000 BP shoreline, a cliff with a negative gradient of 90° would have been formed on the marine-limit surface, as indicated by the vertical dashed line.



FIGURE 2. The schematic relationship between raised shoreline gradient, marine limit gradient, and rate of ice marginal recession. Numbered solid lines are the profiles of hypothetical raised shorelines with the numbers indicating age in thousands of years. Thick vertical bars represent ice margins. The open bar represents a still stand or readvance of the ice margin. Dashed extensions of the shoreline profiles represent the increase in elevation of the glacier bed since the times indicated. The heavy line connecting ice marginal positions is the marine-limit surface.

Relation schématique entre le gradient des lignes de rivages, le gradient des limites marines et le taux de récession des marges glaciaires. Les lignes numérotées représentent les profils hypothétiques des lignes de rivage soulevées, les chiffres indiquant l'âge en milliers d'années. Les barres verticales représentent les marges glaciaires et la barre vide représente un arrêt ou une avancée de la marge glaciaire. Les pointillés représentent l'augmentation de l'altitude du lit glaciaire depuis le temps indiqué. La ligne épaisse reliant la position des marges glaciaires délimite la surface marine.

# LAKE LIMITS

The maximum water levels that occurred in large glacial lakes as ice fronts retreated across their basins define lakelimit surfaces. These are similar to the marine-limit surface as long as the lake used the same outlet, the outlet was not substantially lowered by erosion, and the outlet was located at the least uplifted end of the lake. All other outlet positions would cause shoreline transgressions ice-distal from the outlet. In other words, had the sea invaded the glacial lake basin, the marine-limit isolines would have trended parallel to the lakelimit isolines, although the marine-limit isolines would have been lower (Fig. 3). According to published interpretations, these conditions pertain to glacial Lake McConnell and Lake Mackenzie in the Mackenzie River drainage basin (Smith, 1992, 1994), to the Ojibway phase of glacial Lake Agassiz-Ojibway (Veillette, 1994), and to glacial Lake Hitchcock in the Connecticut River valley in New England (Koteff et al., 1993).

There is, however, a difference between a lake-limit surface and a marine-limit surface. Although both were affected equally in neighbouring localities along the same isobase by the isostatic uplift that occurred as the ice front retreated, the marine-limit surface was additionally affected by eustatic sealevel rise. Because emergence is isostatic uplift minus eustatic sea-level rise, marine-limit elevations and gradients were reduced by eustatic rise. Although the elevation of a lake basin was also reduced by eustatic sea-level rise, the tilting of the basin with respect to its outlet was not. The consequence is that for adjacent lake and marine basins, the lake-limit surface should rise more steeply than the marine-limit surface.

Figure 3 compares shoreline and water-limit profiles in adjacent marine and lake basins with identical deglaciation and uplift histories. Part A shows hypothetical emergence curves for site A (curve Ae) and site B (curve Be) and uplift curves for the same sites, adding the eustatic corrections from curve B in Figure 1. Site A, at marine limit, and the outlet sill (A') of the glacial lake have identical uplift histories (part B of Fig. 3). Site B is at marine limit 100 km closer to the uplift centre and it shares an identical uplift history with a site (B') in the lake basin 100 km in the same direction from the outlet. The lower part of part B of Figure 3 shows profiles of the 9, 10, and 11 ka BP shorelines (solid lines labelled 9 and 10) or their projections behind the contemporaneous ice margins (dashed line labelled 11) resulting from curves Ae and Be. It also shows the amount of uplift since 9, 10, and 11 ka BP (lines labelled 9u, 10u, 11u) resulting from curves Au and Bu. The ice front receded across point A at 11 ka BP and across point B at 9 ka BP, with a constant rate of recession during the interim. Thus at the 50-km mark, the 10-ka shoreline is at 25 m. The resulting marine-limit surface (bold line), which starts at 20 m at point A, rises to 25 m at the 50-km mark and intersects the



FIGURE 3. Relationship between a lake-limit surface and an adiacent marine-limit surface formed over the same time interval. (A) Emergence (Ae, Be) and uplift (Au, Bu) curves for sites A and B. (B) Site B is 100 km closer to the uplift centre than site A. Sites A and B are at marine limit. Site A' is at a glacial lake outlet sill on same isobase as site A. Site B' is on same isobase as site B. Numbered lines (9, 10, 11) are shoreline profiles; lines labelled 9u etc. show uplift profiles. Heavy lines represent marine-limit (lower) and lakelimit profiles (upper).

Relation entre la surface d'une limite lacustre et celle d'une limite marine adjacente qui a été formée en même temps. (A) Courbes d'émergence et de soulèvement (Au, Bu) pour les sites A et B. (B) Le site B est 100 km plus près du centre de soulèvement que le site A. Les sites A et B occupent la limite marine. Le site A', à l'exutoire d'un lac glaciaire, est sur la même isobase que le site A. Le site B' est sur la même isobase que le site B. Les lignes numérotées (9, 10, 11) sont les profils des lignes de rivage; les lignes identifiées par 9u, etc., représentent les profils de soulèvement. Les lignes épaisses représentent les profils des limites marines (bas) et des limites lacustres (haut).

9-ka shoreline at point B, returning to an elevation of 20 m (positive and negative gradients of 1:10 000). The upper part of part B of Figure 3 (note change of vertical scale) shows lake shoreline profiles for the same times or their projections behind the contemporaneous ice margins (dashed lines). Point B' has been uplifted 40 m more than point A' (lake sill) since 11 ka BP, 28 m more since 10 ka BP, and 20 m more since 9 ka BP, according to curves Au and Bu in part A of Figure 3. The lake-limit surface rises from the sill to intersect the 10-ka shoreline midway between points A and B at 13 m above the sill. It intersects the 9-ka shoreline 20 m above the sill. Therefore, the lake-limit surface is steeper (net rise of 20 m) than the marine-limit surface (net rise 0 m), because only the latter is dampened by eustatic sea-level rise during the interval over which it formed.

It is evident, therefore, that marine-limit and lake-limit topographies are features that need to be reconciled with each other and with the pattern and chronology of deglaciation, on the one hand, and with geophysical models of glacioisostatic adjustment on the other.

#### PREVIOUS MARINE-LIMIT MAPS

The most recent marine-limit map of Canada was prepared by John Andrews for the National Atlas of Canada using data available as of 1969 (Andrews, 1972; scale 1:30 000 000). The map was also included in a journal article that reviewed previous renderings of marine-limit isolines (Andrews, 1973). The earliest maps recognized a prominent region of maximum emergence over Québec-Labrador or southeastern Hudson Bay and placed the zero isoline over Atlantic Canada and New England with reasonable accuracy (De Geer, 1892; Fairchild, 1918; Daly, 1934). The first continental-scale map, which however excluded the Pacific coast, was by Farrand and Gajda (1962). It was made possible by the great expansion of field observations throughout the Arctic after the second world war, largely by the officers of the Geological Survey of Canada and the former Canadian Geographical Branch (Prest et al., 1968). The map was reasonably accurate in placing centres of maximum emergence in southeastern Hudson Bay and a second centre in the High Arctic, as well as in the values shown there and elsewhere. Also, it illustrated the tilted shorelines of glacial Lake Algonquin in the Great Lakes region and of Lake Agassiz west of there, so as to indicate the limit of the uplifted region and the trend of isobases. The map was unfortunately marred by misleading data (terraces and other features of non-marine origin [lves, 1963]) from eastern Baffin Island, showing emergence of 150-180 m in regions now known to have emerged by less than 50 m. Andrews (1972) constructed his map for the National Atlas by selecting the maximum recorded marinelimit elevation within each of 125 grid cells, placing these values at the cell centres, and contouring them, thus filtering out lower values. No lake-limit data were used, nor were data from the Pacific coast included.

### METHOD

Isolines on the current map are simple objective contours of all available measurements of marine-limit elevations (n = 929) for which reasonably accurate co-ordinates are available (Fig. 4; Appendix). Minimum and maximum elevations of marine limits are not knowingly included, because these are not amenable to straightforward contouring. Inland trends of marine-limit isolines, where not guided by lake-limit isolines, are based on the general form of the continental ice sheet. Published statements that geological features represent local marine limits are accepted at face value, as they were in previous syntheses. Primary references are given wherever possible. For several sites, we have retained information from the Glacial Map of Canada (Prest et al., 1968) for which we were unable to identify a primary source. These were probably supplied directly to the authors (Prest et al., 1968) from unpublished field notes, primarily by officers of the Geological Survey of Canada. Data points are not plotted for the lake limits, but these may be found in Koteff et al. (1993) for Lake Hitchcock, in Veillette (1994) for Lake Ojibway, in Dredge (1983a) and Klassen (1983) for Lake Agassiz, and in Smith (1992, 1994) for lakes Mackenzie and McConnell. The Hitchcock and Ojibway limits are very well constrained by measurements.

#### PATTERN

# MARINE LIMITS

The zero isoline (Fig. 5) represents the geographical limit of net postglacial emergence. Its position resembles that shown by Andrews (1972) in roughly mimicking the limit of glaciation. It is fixed just south of Boston in the northeastern U.S.A. (Stone and Peper, 1982) and trends across central Nova Scotia (Prest et al., 1968, 1972; Stea et al., 2001) and Prince Edward Island (Prest et al., 1968). The location of the zero isoline across the Gulf of St. Lawrence is problematic, depending on acceptance or rejection of a 37-m feature shown on the Magdalen Islands. This feature was first proposed as the postglacial marine limit by Robert Chalmers (see Goldthwait, 1915) and figured as such by Prest et al. (1968). However, that interpretation was questioned by Grant (1989), who placed the zero isoline north of these islands and the deglacial shoreline on the Magdalen Shelf at -75 m. Shaw et al. (2002) followed Grant's interpretation but did not explicitly consider the problem. The 37-m feature is, however, accordant with marine-limit elevations in southwestern Newfoundland and in northwestern Prince Edward Island, on either side of the Gulf directly to the east and west. It is considered to be a postglacial marine feature by M. Parent (Geological Survey of Canada, personal communication, 2004) based on elevations of probable raised beach sands. It is, therefore, tentatively accepted here. The zero isoline is placed offshore from southern and southeastern Newfoundland, in contrast to earlier renditions, because postglacial raised shorelines have been reported throughout that region (Brookes, 1977: 9 m at Wreckhouse; Tucker et al., 1982: 6 m at Fortune; Rogerson and Tucker, 1972: 11 m at Spear Island; Catto et al., 2000: 6 m at Horse Cove). It is far offshore from northeastern Newfoundland to Hudson Strait, as required by the high marine limits along the Labrador coast, which however decline to 15 m in the north (Løken, 1962; Ives, 1963). The zero isoline intersects Resolution Island at the mouth of Hudson Strait, but marine limit rises to 21 m on adjacent Edgell Island (Kaplan and Miller, 2003). It is then located offshore



FIGURE 4. Sites of recorded marine-limit elevations listed in the Appendix.

along most or all of eastern Baffin Island but onshore in southeastern Devon Island, where deglacial meltwater channels can be traced down to the present shoreline (Dyke, 1998). It is apparently located offshore around the entire length of Greenland (Funder, 1989) and off the northwestern Canadian polar margin as far as its landfall at Cape Bathurst, east of the Mackenzie Delta (Prest et al., 1968). The position of the zero isoline near Banks Island remains somewhat problematic, because no radiocarbon dates are available to document postglacial (as opposed to earlier) marine overlap of the western part of that island. Nevertheless, because the last glacial limit has been placed at the moraines flanking the north and south coast of that island (Dyke and Prest, 1987; Dyke, 2004a), the associated raised shorelines at 20 m (e.g. the ice-contact delta at Sachs Harbour; Vincent, 1983) are necessarily of the same age as the moraines and are so plotted here. In the Pacific, the deglacial marine-limit zero isoline passes approximately

Altitude des limites marines présentées en annexe.

through Seattle, Washington (Thorson, 1980), is offshore of Vancouver Island, but evidently lies landward of the Queen Charlotte Islands (Josenhans *et al.*, 1997). It is undefined along the southeast coast of Alaska.

The most salient features of the marine-limit topography (Fig. 5) are similar to those on the map of Andrews (1972). These features are (1) the cell of highest values in southeastern Hudson Bay, here reaching 270 m (Hillaire-Marcel, 1980; Vincent, 1989), (2) the cell of high values near Bathurst Inlet in the western arctic mainland, reaching 228 m (Kerr, 1996), and (3) the cell of high values over the Eureka Sound region between Ellesmere and Axel Heiberg islands in the Canadian High Arctic, reaching 156 m (Bell, 1996; Bednarski, 1998). The shapes of these cells differ from the earlier rendition, particularly that of the Bathurst Inlet cell, which is shown as more elongate southward, the trend of the isolines being guided by the lake-limit isolines of glacial Lake McConnell.



FIGURE 5. Deglacial marine- and lake-limit surfaces, North America and Greenland. Dashed isolines are more tentatively placed than others. The framed insets show lake-limit isolines for glacial Lake Mackenzie (smaller) and Lake McConnell (larger) in the Northwest Territories, a portion of the Ojibway phase of Lake Agassiz in northern Manitoba, a portion of Lake Ojibway in Québec and Ontario, and Lake Hitchcock in New England. The marine-limit isolines are at 25-m intervals starting at 0 m. Lake McConnell at 20-m intervals starting at 80 m elevation, Lake McConnell at 20-m intervals starting at 180 m, Lake Agassiz at 20-m intervals starting at 200 m, Lake Ojibway at 20-m intervals starting at 245 m, and Lake Hitchcock at 25-m intervals starting at 45 m.

Two additional high cells on the marine-limit surface are located over eastern Boothia Peninsula to northeastern Keewatin, reaching 255 m (Dyke, 1984; Giangioppi *et al.*, 2003), and in southern Foxe Basin, reaching 195 m (Bird, 1970; Laymon, 1988). These cells are less clear on the earlier map of Andrews (1972) because of the fewer data then available. Also similar to the map of Andrews (1972), is the region of high marine limits along the Ottawa-St. Lawrence valley,

Surfaces marines et lacustres de déglaciation, pour l'Amérique du Nord et le Groenland. Les isolignes pointillées sont plus incertaines que les autres. Les encadrés montrent les isolignes des limites lacustres du lac glaciaire Mackenzie (petit) et du lac McConnell (grand) dans les Territoires du Nord-Ouest, une partie de la phase Ojibway du lac Agassiz au nord du Manitoba, une partie du lac Ojibway au Québec et en Ontario, et le lac Hitchcock en Nouvelle-Angleterre. Les isolignes des limites marines sont espacées de 25 m et débutent à 0 m. Les isolignes du lac Mackenzie sont espacées de 20 m et débutent à 180 m, celles du lac Agassiz sont espacées de 20 m et débutent à 200 m, celles du lac Agassiz sont espacées de 20 m et débutent à 245 m et celles du lac Hitchcock sont espacées de 25 m et débutent à 45 m.

reaching 250 m (Fulton, 1987; Occhietti, 1989). Although Vincent (1989) showed the highest marine limit in the Ottawa region as 275 m in the Gatineau valley, Occhietti (1989) considered that area to have been inundated by fresh water, and the 275-m site of Vincent is, therefore, not included here. Andrews (1972) showed the high values of the Ottawa region as an extension of the southeast Hudson Bay cell. However, on Figure 5 these are shown as a closed cell of high values with a negative (downward) northwestward slope, because the trend of lake-limit isolines across Lake Ojibway (Veillette, 1994) does not allow connection of high marine-limit contours between the two regions.

Prominent regions of low marine-limit elevations located well inboard of the limit of glaciation occur in north-central Keewatin, where elevations fall below 100 m (Lee, 1968; Prest *et al.*, 1968; Dredge and McMartin, 2005), on the Ungava Peninsula of Québec, where elevations fall below 125 m (Lauriol, 1982) and over the spine of Baffin Island, where elevations fall below 50 m. The last are the lowest values to be found inboard of higher values in the glaciated region (Blake, 1966; Andrews, 1970b; Dyke, 1979b). Also of note are the negative slope of 100 m northward across Foxe Basin and the 100 m positive (upward) slope northeastward across northern Ontario.

The edge of a final cell of high values in Canada, the centre of which must well exceed 230 m (Miller, 1973; Clague, 1989), is located along the Pacific coast. These high values might reasonably be extrapolated across the central Cordilleran Ice Sheet region. Although we currently lack lakelimit data to guide the trend of the isolines there, lines of 100 m and greater value must close to make a separate cell over the Cordilleran region if the 100-m line over the Laurentide Ice Sheet region is correctly tied into the lake-limit isolines of Lake McConnell from the north.

Three cells with marine-limit elevations exceeding 100 m are shown in Greenland (Funder, 1989). One of these, reaching 140 m in the northwest (England, 1985), is an extension of the cell over the Canadian High Arctic. The other two, reaching maximum values of 140 m (Kelly, 1973) and 115 m (Funder, 1990), coincide with the widest strips of ice-free land in southwestern and central-eastern Greenland, respectively. Lower ridges of marine-limit values, exceeding 50 m, extend along the coast from these cells.

#### LAKE LIMITS

Lake-limit surfaces generally rise, as expected, toward the centre of the glaciated region. The Lake McConnell and Lake Ojibway (in Québec and easternmost Ontario) surfaces are particularly useful in guiding the trends of marine-limit isolines through interior regions. Unfortunately, similar data are not available for the vertical limits of Lake Ojibway in most of its extent in Ontario.

In the case of Lake Hitchcock and Lake Ojibway, the lakelimit surfaces have gradients that are clearly greater than those of the adjacent marine-limit surfaces, which is to be expected as discussed above. Both these lakes show only positive northward gradients, with that of Lake Hitchcock being essentially constant and that of Ojibway convex upward. Lakes Mackenzie and McConnell have entirely positive lake-limit gradients. However, the McConnell gradient decreases toward the centre of the ice sheet. The McConnell gradient exceeds the gradient of the adjacent marine-limit surface to the north, as expected. The lake-limit surface of the Ojibway phase of Lake Agassiz is evidently more complex with a positive northward gradient followed by an irregular negative gradient at its north end.

# DISCUSSION

#### MARINE LIMITS

In Canada, most of the cells of high marine limits correspond approximately to areas of inferred maximum former ice thickness. The cells over southeastern Hudson Bay and Québec, over Bathurst Inlet and areas to the south, and over southern Foxe Basin roughly reflect the areas of maximum ice thickness of the Labrador Sector, the Keewatin Sector, and the Baffin Sector of the Laurentide Ice Sheet, respectively (Dyke and Prest, 1987; Dyke et al., 2002; Dyke, 2004a). The cell over the High Arctic corresponds to the area of maximum thickness of the Innuitian Ice Sheet (Blake, 1970; Dyke, 1998; Atkinson and England, 2004). Finally the cell over the Cordillera is related to uplift engendered by removal of the Cordilleran Ice Sheet, which had its thickest ice in the region between the coastal mountain ranges and the Rocky Mountains (Clague, 1989). If the marine-limit surface along the Pacific coast were extrapolated a short distance inland, the indicated postglacial increase in elevation over central British Columbia would exceed that of southeast Hudson Bay, which is generally taken to be the highest in the world.

In contrast to the interpretation above, the high marinelimit elevations over the St. Lawrence-Ottawa region and over the Gulf of Boothia region are interpreted as resulting from incursion of the sea into areas that were still greatly depressed at time of deglaciation rather than former ice-load centres (Occhietti, 1989; Dyke and Dredge, 1989). This interpretation is compatible with the most recent interpretation of pattern of deglaciation (Dyke, 2004a).

A trough of low marine limits (<150 m) over western Hudson Bay may indicate a separation of Keewatin and Labrador sector uplifts that was not previously recognized. This feature is defined by a series of marine-limit determinations in northern Manitoba that decline to a low of 125 m (Klassen, 1986; Dredge and Nixon, 1992) and by a single determination of 124 m on Coats Island (Aylsworth and Shilts, 1991). In the former area, the apparent marine limit is just above a prominent marine feature known as the Great Beach. All water-laid sediment above it apparently was deposited in glacial Lake Agassiz. The Great Beach is traceable for over 180 km and rises from 125 m at its south end to about 145 m at its north end. In addition to its large form, it is conspicuous because the Lake Agassiz basin inland of it lacks beaches (Klassen, 1986; Dredge and Nixon, 1992) due to the sudden final drainage of the lake (Clarke et al., 2004). The apparent marine limit on Coats Island is a clear upper limit of raised beaches, above which is evidently unmodified till. Thus, the trough of low marine-limit values appears to be a valid feature. It is not readily interpretable as a product of late deglaciation.

In Greenland, the highest marine limits correspond to areas of greatest ice-load reduction, rather than to areas of greatest former ice thickness, because most of that ice load is still present. Thus, the highest raised shorelines are in areas where the coastal ice-free zone is widest and values decline from the outer or central coasts toward the present ice margin.

Other elements of the marine-limit topography can best be interpreted in terms of the pattern of deglaciation. Among these are the following clear examples: (1) The low values over northern Keewatin and the spine of Baffin Island, discussed above, correspond to areas of late deglaciation, as does the long negative northward slope of values across Foxe Basin. (2) The steep negative eastward slope on the marine-limit surface on western Melville Peninsula, one of the most prominent features of the map and where values decrease eastward from 225 m to 125 m, corresponds with a large regional end moraine, the Melville Moraine, from which the ice retreated slowly enough for 100 m of emergence to occur (Dredge, 1990). (3) A westward drop in marine-limit elevation of similar magnitude at the head of Frobisher Bay on southeastern Baffin Island corresponds to a major belt of end moraines there (Blake, 1966; Miller, 1980), and the southwestward decline of values from a ridge over the northeast Baffin Island fiords similarly corresponds with a dense belt of end moraines (Andrews et al., 1970; Hodgson and Haselton, 1974). (4) The abrupt drop of marine limit on southern Melville and northwestern Victoria islands from 90-120 m on the distal side of Winter Harbour Till to 30-55 m on the proximal side records emergence that occurred between the onset of ice recession prior to the Winter Harbour Advance of the Laurentide Ice Sheet and the onset of recession after the advance (Hodgson and Vincent, 1984). (5) The decrease of values from the outer coasts to the spine of Devon Island by 25-50 m reflects inland recession of the ice cap on that island (Dyke, 1998). (6) The negative marine-limit slope of about 100 m northwest of the St. Lawrence lowlands indicates slow ice recession across that region. (7) The decline of marine-limit elevations by as much as 50-60 m inland from the southeast coast of Hudson Bay reflects emergence that occurred while ice stood at and retreated behind the Sakami Moraine (Allard and Seguin, 1985). (8) Smaller negative gradients related to slow ice recession occur along central, northern, and east-central Ellesmere Island fiords (Hodgson, 1985; Smith, 1999; England et al., 2000, 2004) and along fiords in western Newfoundland (Grant, 1987) and British Columbia (Friele and Clague, 2002). More detailed mapping of marine limits will probably bring to light other areas where strong negative marine-limit gradients can be related to the history of ice recession.

### LAKE LIMITS

A problematic feature of the lake-limit data is the difference between the lake-limit elevation of northernmost Lake Hitchcock in the Connecticut River valley and the marine limit in the adjacent Lake Champlain valley. The northernmost Lake Hitchcock limit, at 245 m, is uplifted by 200 m more than its southern outlet, at 45 m (Koteff et al., 1993). The 0-m marinelimit isoline near Boston (which is also the 0-m isobase on the 14 500 <sup>14</sup>C BP marine shoreline) is here extrapolated westward to correspond to the 70-m level of Lake Hitchcock, leaving northernmost Lake Hitchcock 175 m higher than that. The marine limit in that part of the Lake Champlain valley that lies along the same isobase as northernmost Lake Hitchcock and 100 km to the west-southwest is at 67 m (West Bridport site of Stewart and MacClintock, 1969; correlated using the isobase trend of Parent and Occhietti, 1988). If both elevations and the inferred history of Lake Hitchcock are correct, the difference of about 108 m can only be accommodated by the rise

of eustatic sea level between the time that the Lake Hitchcock outlet in Connecticut was deglaciated (15 400 <sup>14</sup>C BP based on the age of the basal varve in southernmost Lake Hitchcock [Ridge, 2004]; note that the age of this varve has been revised from 14 820 <sup>14</sup>C BP of Ridge et al. [1999]) and the time of formation of the marine limit in the Lake Champlain valley. Dyke (2004a) placed the latter at about 11 500 <sup>14</sup>C BP, although it may date as late as 11 100 <sup>14</sup>C BP (Richard and Occhietti, 2005; recall that marine limit is synchronous in this region). Relative sea level at Barbados, the most commonly cited modern eustatic sea-level reference, was at about -68 m and -72 m at 11 100 and 11 500 <sup>14</sup>C BP, respectively (Fairbanks, 1989). Because eustatic sea level at 15 400 <sup>14</sup>C BP was at -113 m, only 45 m of eustatic sea-level rise occurred between that time and 11 100 <sup>14</sup>C BP. The problem cannot be resolved even by allowing deglaciation of the lake outlet to be much earlier than thought because eustatic sea-level rise between 18 000 and 11 100 <sup>14</sup>C BP was only 60 m. Thus, an error in either the interpretation of the lake history or marine limits is indicated. An attempt to reconcile these data might start with evaluating the assumption that Lake Hitchcock was still using its southernmost outlet when its northernmost lake-limit shorelines were forming.

A further issue involves the negative slope on the lake limit of northernmost Lake Agassiz, here shown as less steep than would be indicated by several of the lower sets of shorelines assigned to Lake Agassiz by Dredge (1983a) and Dredge et al. (1986). The pattern of deglaciation in this region, a simple northward recession of the ice margin toward the 60<sup>th</sup> parallel, is not controversial, because it seems clear from the landform record (Dredge et al., 1986). The fragment of the Lake Agassiz record that is preserved in northernmost Manitoba is probably related to the Ojibway phase of Lake Agassiz when outflow was via the Ottawa River headwater in Québec and when the southern shore of Lake Agassiz in Manitoba either barely enclosed Lake Winnipeg or later ended north of Lake Winnipeg (Klassen, 1983, 1986; Thorleifson, 1996; Dyke, 2004a). The Ottawa River was the last available outlet of Lake Agassiz prior to catastrophic northward drainage to Hudson Bay (Clarke et al., 2004). In that reconstruction, northward declining lake limits and shorelines below the lake limit within northern Lake Agassiz can only relate to differential uplift unless numerous subglacial drainage events occurred. Ignoring lake stages lower than 340 m and assuming an Ottawa River outlet throughout, data indicate a negative northward lake-limit slope of about 100 m across about 1.5° of latitude at the north end of the basin. Thus, during the time the ice margin retreated across that part of the basin, 100 m more uplift occurred there than occurred at the Ottawa River outlet. Lake Agassiz was emptied by northward drainage at about 7700 <sup>14</sup>C BP, since which time 180 m of emergence (about 200 m of uplift) has occurred on the adjacent coast of Hudson Bay. Current reconstruction of ice retreat (Dyke, 2004a) places the beginning of ice recession from the highest Agassiz shorelines north of Reindeer Lake (442 m) at 8000-8200 <sup>14</sup>C BP. Thus in a span of 300-500 years, that region was uplifted 100 m more than was the Ottawa River outlet. Because the implied uplift rate is much larger than others currently known for areas of Laurentide glaciation, the pattern of lake limits

shown may be a misleading target for uplift modelling. Alternative interpretations of the lake shoreline data might involve (a) considering whether multiple subglacial drainages or partial drainages of Lake Agassiz occurred (as implicit in Dredge, 1983a), or (b) considering whether these shorelines were formed in lakes independent of Lake Agassiz, such as a lake in the Reindeer Lake basin.

# CONCLUSION

Marine-limit and certain lake-limit surfaces can now be reconstructed reasonably well for much of Canada and Greenland and in greater detail for the northern, central and eastern Arctic, as well as for southeastern Canada and New England. In these details can be recognized the influences of maximum ice-load distributions and the pattern and relative rates of deglaciation as currently understood. These virtual topographies form an independent set of data that already have been largely reconciled with the pattern of deglaciation, because marine-limit ages known from radiocarbon dating are a large part of the age control used for deglaciation maps (Dyke, 2004a). Hence, they are valuable targets for replication by geophysical models of glacioisostatic adjustment, which traditionally have chosen other and perhaps more straightforward targets, such as relative sea-level curves. Nevertheless, certain aspects of the primary data, lake-limit data in particular, are problematic and alternative interpretations might be considered. Modelling may bring to light other currently accepted interpretations that are problematic.

Future syntheses of marine- and lake-limit surfaces should aim at capturing full local details of variability. Researchers would greatly contribute to these syntheses by reporting geographic co-ordinates of their measured sites.

### ACKNOWLEDGEMENTS

We greatly appreciate the GIS processing of the data by Louis Robertson and cartography by Mary Clarke, both of the Geological Survey of Canada (GSC-Ottawa), an internal review by R.A. Klassen (GSC-Ottawa), and formal reviews by J.T. Andrews (University of Colorado) and C.F.M. Lewis (GSC-Dartmouth). The work was completed and supported as part of the Paleoenvironments Project (led by Stephen Wolfe) of the Climate Change Programme (managed by Josef Cihlar and Donald Forbes) of the Earth Science Sector, Natural Resources Canada.

#### REFERENCES

- Allard, M., 1997. Geomorphological changes and permafrost dynamics: Key factors in changing arctic ecosystems. Geoscience Canada, 23: 205-212.
- Allard, M., Fournier, A., Gahé, É. and Séguin, M.K., 1989. Le Quaternaire de la côte sud-est de la baie d'Ungava, Québec nordique. Géographie physique et Quaternaire, 43: 325-336.
- Allard, M. and Rousseau, L., 1999. The internal structure of a palsa and a peat plateau in the Rivière Boniface region, Québec: Inferences on the formation of ice segregation mounds. Géographie physique et Quaternaire, 53: 373-387.
- Allard, M. and Seguin, M.K, 1985. La déglaciation d'une partie du versant hudsonien québécois: bassins des rivières Nastapoka, Sheldrake et à l'Eau Claire. Géographie physique et Quaternaire, 39: 13-24.

- Anderson, R.S., Jacobson, G.L., Davis, R.B. and Stuckenrath, R., 1992. Gould Pond, Maine: Late-glacial transitions from marine to upland environments. Boreas, 21: 359-371.
- Andrews, J.T., 1963. End moraines and late-glacial chronology of the northern Nain-Okak section of Labrador. Geografiska Annaler, 45: 158-171.
- Andrews, J.T., 1966. Patterns of coastal uplift and deglacierization, west Baffin Island, N.W.T. Geographical Bulletin, 8: 174-193.
- Andrews, J.T., 1970a. A geomorphological study of postglacial uplift with particular reference to Arctic Canada. Institute of British Geographers, London, Special Publication 2, 156 p.
- Andrews, J.T., 1970b. Differential crustal recovery and glacial chronology (6700 BP), west Baffin Island, N.W.T., Canada. Arctic and Alpine Research, 2: 115-134.
- Andrews, J.T., 1972. Post-glacial rebound, p. 35-36. *In* G. Fremlin, ed., The National Atlas of Canada. Department of Energy, Mines and Resources, Ottawa, 254 p.
- Andrews, J.T., 1973. Maps of the maximum postglacial marine limit and rebound for the former Laurentide Ice Sheet (The National Atlas of Canada). Arctic and Alpine Research, 5: 41-48.
- Andrews, J.T., 1975. Radiocarbon date list II from Cumberland Peninsula, Baffin Island, N.W.T., Canada. Arctic and Alpine Research, 7: 77-92.
- Andrews, J.T., 1976. Radiocarbon date list III, Baffin Island, N.W.T., Canada. Institute of Arctic and Alpine Research, University of Colorado, Boulder, Occasional Paper 21, 47 p.
- Andrews, J.T., Buckley, J.T. and England, J., 1970. Late glacial chronology and glacio-isostatic recovery, Home Bay, east Baffin Island, Canada. Geological Society of America Bulletin, 81: 1123-1148.
- Andrews, J.T. and Drapier, L., 1967. Radiocarbon dates obtained through Geographical Branch observations. Geographical Bulletin, 9: 115-162.
- Andrews, J.T. and Falconer, G., 1969. Late glacial and post-glacial history and emergence of the Ottawa Islands, Hudson Bay, N.W.T.: Evidence on the deglaciation of Hudson Bay. Canadian Journal of Earth Sciences, 6: 1263-1276.
- Andrews, J.T. and Miller, G.H., 1972. The Quaternary history of northern Cumberland Peninsula, east Baffin Island, N.W.T., Part X: Radiocarbon date list. Arctic and Alpine Research, 4: 261-277.
- Andrews, J.T. and Retherford, R.M., 1978. A reconnaissance survey of late Quaternary sea levels, Bella Bella/Bella Coola region, central British Columbia coast. Canadian Journal of Earth Sciences, 15: 341-350.
- Andrews, J.T. and Short, S.K., 1983. Radiocarbon date list V: Baffin Island, N.W.T., Canada and Radiocarbon date list II: Labrador and northern Quebec, Canada. Institute of Arctic and Alpine Research, University of Colorado, Boulder, Occasional Paper 40, 70 p.
- Atkinson, N., 1999. The last glaciation and relative sea level history of central Baumann Fiord, SW Ellesmere Island, Canadian High Arctic. M.Sc. thesis, University of Alberta, 79 p.
- Atkinson, N., 2003. Late Wisconsinan glaciation of Amund and Ellef Ringnes islands, Nunavut: Evidence for the configuration, dynamics, and deglacial chronology of the northwest sector of the Innuitian Ice Sheet. Canadian Journal of Earth Sciences, 40: 351-363.
- Atkinson, N. and England, J., 2004. Postglacial emergence of Amund and Ellef Ringnes islands, Nunavut: Implication for the northwest sector of the Innuitian Ice Sheet. Canadian Journal of Earth Sciences, 41: 271-283.
- Awadallah, S.H. and Batterson, M.J., 1990. Comment on "Late deglaciation of the central Labrador coast and its implications for the age of glacial Lakes Naskaupi and MacLean and for prehistory" by P.U. Clark and W.W. Fitzhugh. Quaternary Research, 34: 372-373.
- Aylsworth, J., Cunningham, C.M., Kettles, I.M. and Shilts, W.W., 1986. Surficial geology, Henik Lakes, District of Keewatin. Geological Survey of Canada, Ottawa, Map 2-1985, Scale 1:125 000.
- Aylsworth, J. and Shilts, W.W., 1991. Surficial geology of Coates and Mansel islands, Northwest Territories. Geological Survey of Canada, Ottawa, Paper 89-23, 26 p.

- Barnett, P.J., 1988. History of the northwestern arm of the Champlain Sea, p. 25-36. *In* N.R. Gadd, ed., The Late Quaternary Development of the Champlain Sea Basin. Geological Association of Canada, St. John's, Special Paper 35, 312 p.
- Batterson, M.J. and Catto, N.R., 2001. Topographically-controlled deglacial history of the Humber River basin, western Newfoundland. Géographie physique et Quaternaire, 55: 213-228.
- Batterson, M.J. and Taylor, D.M., 2003. Regional till geochemistry and surficial geology of the western Avalon Peninsula and Isthmus. Newfoundland Department of Mines and Energy, St. John's, Geological Survey Report 03-1, p. 259-272.
- Bednarski, J., 1986. Late Quaternary glacial and sea level events, Clements Markham Inlet, northern Ellesmere Island, Arctic Canada. Canadian Journal of Earth Sciences, 23: 1343-1355.
- Bednarski, J., 1995. Glacial advances and stratigraphy in Otto Fiord and adjacent areas, Ellesmere Island, Northwest Territories. Canadian Journal of Earth Sciences, 32: 52-64.
- Bednarski, J., 1996. Surficial geology and sea level history of Bathurst Island, Northwest Territories. Geological Survey of Canada, Ottawa, Current Research 1996-B, p. 61-66.
- Bednarski, J., 1998. Quaternary history of Axel Heiberg Island, bordering Nansen Sound, Northwest Territories, emphasizing the last glacial maximum. Canadian Journal of Earth Sciences, 35: 520-533.
- Bell, T., 1996. The last glaciation and sea level history of Fosheim Peninsula, Ellesmere Island, Canadian High Arctic. Canadian Journal of Earth Sciences, 33: 1075-1086.
- Bell, T., Batterson, M.J., Liverman, D.G.E. and Shaw, J., 2003. A new late-glacial sea-level record for St. George's Bay, Newfoundland. Canadian Journal of Earth Sciences, 40: 1053-1070.
- Bell, T., Rogerson, R.J. and Mengel, F., 1989. Reconstructed ice-flow patterns and ice limits using drift pebble lithology, outer Nachvak Fiord, northern Labrador. Canadian Journal of Earth Sciences, 26: 577-590.
- Bennike, O., 1987. Quaternary geology and biology of the Jorgen Brunlund Fjord area, north Greenland. Meddelelser om Grønland, Geoscience 18, 24 p.
- Bennike, O., 2002. Late Quaternary history of Washington Land, North Greenland. Boreas, 31: 260-272.
- Bennike, O., Hansen, K.B., Knudsen, K.L., Penney, D. and Rasmussen, K.L., 1994. Quaternary marine stratigraphy and geochronology in central west Greenland. Boreas, 23: 194-215.
- Bennike, O. and Weidick, A., 2001. Late Quaternary history around Nioghalvfjerdsfjorden and Jokelbugten, north-east Greenland. Boreas, 30: 205-227.
- Bigras, P. and Dubois, J.M.M., 1987. Répertoire commenté des datations <sup>14</sup>C du nord de l'estuaire et du Golfe du Saint-Laurent, Québec et Labrador. Bulletin de recherche, Département de géographie, Université de Sherbrooke, nos. 94-95-96, 166 p.
- Birch, F.S., 1980. Seismic reflection surveys of kame plains in southeastern New Hampshire. Northeastern Geology, 2: 81-86.
- Bird, J.B., 1970. The final phase of the Pleistocene ice sheet north of Hudson Bay. Acta Geographica Lodziensia, 24: 75-89.
- Blake, W. Jr., 1966. End moraines and deglaciation chronology in northern Canada, with special reference to southern Baffin Island. Geological Survey of Canada, Ottawa, Paper 66-26, 31 p.
- Blake, W. Jr., 1970. Studies in the history of Arctic Canada I: pumice, radiocarbon dates, and differential postglacial uplift in the eastern Queen Elizabeth Islands. Canadian Journal of Earth Sciences, 7: 634-664.
- Blake, W. Jr., 1975. Radiocarbon age determinations and postglacial emergence at Cape Storm, southern Ellesmere Island, arctic Canada. Geografiska Annaler, 57A: 1-71.
- Blake, W. Jr., 1988. Geological Survey of Canada radiocarbon dates XXVII. Geological Survey of Canada, Ottawa, Paper 87-7, 100 p.
- Blake, W. Jr., Boucherle, M.M., Fredskild, B., Jenssens, J.A. and Smol, J.P., 1992. The geomorphological setting, glacial history and Holocene development of Kap Inglefields Sø, Inglefield Land, north-west Greenland. Meddelelser om Grønland, Geoscience 27, 42 p.

- Bloom, A., 1963. Late Pleistocene fluctuations of sea level and postglacial rebound in coastal Maine. American Journal of Science, 261: 862-879.
- Briner, J.P., Miller, G.H., Davis, P.T. and Finkel, R.C., 2005. Cosmogenic exposure dating in arctic glacial landscapes: Implications for the glacial history of northeastern Baffin Island, arctic Canada. Canadian Journal of Earth Sciences, 42: 67-84.
- Brookes, I.A., 1969. Late glacial marine overlap in western Newfoundland. Canadian Journal of Earth Sciences, 6: 1397-1404.
- Brookes, I.A., 1974. Late-Wisconsin glaciation of southwestern Newfoundland (with special reference to the Stephenville map-area). Geological Survey of Canada, Ottawa, Paper 73-40, 31 p.
- Brookes, I.A., 1977. Geomorphology and Quaternary geology of the Codroy Lowland and adjacent plateaus, southwest Newfoundland. Canadian Journal of Earth Sciences, 14: 2101-2120.
- Brookes, I.A., 1989. Glaciation of Bonavista Peninsula, northeast Newfoundland. Canadian Geographer, 33: 2-18.
- Bruckner, W.D., 1969. Post-glacial geomorphic features in Newfoundland, eastern Canada. Ecologae Geolog Helvetiae, 62: 417-441.
- Bruneau, D. and Gray, J.T., 1997. Écoulements glaciaires et déglaciation hâtive (*ca.* 11 ka BP?) du nord-est de la péninsule d'Ungava, Québec, Canada. Revue Canadienne des Sciences de la Terre, 34: 1089-1100.
- Catto, N., Griffiths, H., Jones, S. and Porter, H., 2000. Late Holocene sea-level changes, eastern Newfoundland. Newfoundland Geological Survey, St. John's, Report 2000-1, p. 49-59.
- Chapman, D.H., 1937. Late-glacial and postglacial history of the Champlain Valley. American Journal of Science, Fifth Series, 34(200): 89-124.
- Clague, J.J., 1981. Late Quaternary geology and geochronology of British Columbia, Part 2: Summary and discussion of radiocarbon-dated Quaternary history. Geological Survey of Canada, Ottawa, Paper 80-35, 41 p.
- Clague, J.J., 1989. Quaternary geology of the Canadian Cordillera, p. 17-96. In R.J. Fulton, ed., Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Ottawa, Geology of Canada No. 1, 839 p.
- Clague, J.J., Harper, J.R., Hebda, R.J. and Howes, D.E., 1982. Late Quaternary sea levels and crustal movements, coastal British Columbia. Canadian Journal of Earth Sciences, 19: 597-618.
- Clark, P.U., 1988. Glacial geology of the Torngat Mountains, Labrador. Canadian Journal of Earth Sciences, 25: 1184-1198.
- Clark, P.U. and Mix, A.C., 2000. Ice sheets by volume. Nature, 406: 689-690.
- Clark, P.U. and Fitzhugh, W.W., 1990. Late deglaciation of the central Labrador coast and its implications for the age of glacial Lakes Naskaupi and MacLean and for prehistory. Quaternary Research, 34: 296-305.
- Clark, P.U. and Fitzhugh, W.W., 1992. Postglacial relative sea level history of the Labrador coast and interpretation of the archaeological record, p. 189-213. *In* L.L. Johnson and M. Stright, ed., Paleoshorelines and Prehistory: An Investigation of Method. CRC Press, Boca Raton, 243 p.
- Clarke, G.K.C., Leverington, D.W., Teller, J.T. and Dyke, A.S., 2004. Paleohydraulics of the last outburst flood from glacial Lake Agassiz. Quaternary Science Reviews, 23: 389-407.
- Combellick, R.A. and Reger, R.D., 1994. Sedimentological and radiocarbonage data for tidal marshes along eastern and upper Cook Inlet, Alaska. Alaska Division of Geological and Geophysical Surveys, Anchorage, Report of Investigations 94-6, 60 p.
- Craig, B.G., 1961. Surficial geology of northeastern District of Keewatin, Northwest Territories. Geological Survey of Canada, Ottawa, Paper 61-5, 8 p.
- Craig, B.G., 1969. Late glacial and postglacial history of the Hudson Bay region, p. 63-77. *In* P.J. Hood, ed., Earth Science Symposium on Hudson Bay. Geological Survey of Canada, Ottawa, Paper 68-53, 386 p.
- Daly, R.A., 1902. The geology of the northeast coast of Labrador. Harvard University Museum of Comparative Zoology, Geological Series V, Bulletin 38, p. 205-270.
- Dale, R.A., 1934. The Changing World of the Ice Age. Yale University Press, New Haven, 271 p.
- De Geer, G., 1892. On Pleistocene changes of level in eastern North America. Proceedings of the Boston Society of Natural History, 25: 454-477.

- Dethier, D.P., Pessl, F., Keuler, R.F., Balzarini, M.A. and Pevear, D.R., 1995. Late Wisconsinan glaciomarine deposition and isostatic rebound, northern Puget Lowland, Washington. Geological Society of America Bulletin, 107: 1288-1303.
- Dionne, J.-C., 1977. La Mer de Goldthwait au Québec. Géographie physique et Quaternaire, 31: 61-80.
- Dionne, J.-C. and Coll, D., 1995. Le niveau marin relatif dans la région de Matane (Québec), de la déglaciation à nos jour. Géographie physique et Quaternaire, 49: 363-380.
- Dionne, J.-C. and Occhietti, S., 1996. Aperçu du Quaternaire à l'embouchure du Saguenay, Québec. Géographie physique et Quaternaire, 50: 5-34.
- Donner, J.J. and Jungner, H., 1975. Radiocarbon dating of shells from marine Holocene deposits in the Disko Bugt area, West Greenland. Boreas, 4: 25-45.
- Dredge, L.A., 1983a. Character and development of northern Lake Agassiz and its relation to Keewatin and Hudsonian ice regimes, p. 117-131. *In* J.T. Teller and L. Clayton, ed., Glacial Lake Agassiz. Geological Association of Canada, St. John's, Special Paper 26, 451 p.
- Dredge, L.A., 1983b. Surficial geology of the Sept-Iles area, Quebec North Shore. Geological Survey of Canada, Ottawa, Memoir 408, 40 p.
- Dredge, L.A., 1990. The Melville Moraine: Sea-level change and response of the western margin of the Foxe ice dome, Melville Peninsula, Northwest Territories. Canadian Journal of Earth Sciences, 27: 1215-1224.
- Dredge, L.A., 1995. Quaternary geology of northern Melville Peninsula, District of Franklin, Northwest Territories. Geological Survey of Canada, Ottawa, Bulletin 484, 114 p.
- Dredge, L.A., 2002. Quaternary geology of southern Melville Peninsula, Nunavut. Geological Survey of Canada, Ottawa, Bulletin 561, 110 p.
- Dredge, L.A., 2003a. Surficial geology, Wordie Bay, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Open File 4296, Scale 1:100 000.
- Dredge, L.A., 2003b. Surficial geology, Straits Bay, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Open File 4354, Scale 1:100 000.
- Dredge, L.A., 2003c. Surficial geology, Piling Lake, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Open File 4355, Scale 1:100 000.
- Dredge, L.A., 2003d. Surficial geology, Flint Lake, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Open File 4412, Scale 1:100 000.
- Dredge, L.A. and Cowan, W.R., 1989. Quaternary geology of the southwestern Canadian Shield, p. 214-235. *In* R.J. Fulton, ed., Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Ottawa, Geology of Canada No. 1, 839 p.
- Dredge, L.A. and McMartin, I., 2005. Postglacial marine deposits and marine limit determinations, inner Wager Bay area, Kivalliq region, Nunavut. Geological Survey of Canada, Ottawa, Current Research 2005-B, 5 p.
- Dredge, L.A. and Nixon, M.F., 1992. Glacial and environmental geology of northeastern Manitoba. Geological Survey of Canada, Ottawa, Memoir 432, 80 p.
- Dredge, L.A., Nixon, M.F. and Richardson, R.J., 1986. Quaternary geology and geomorphology of northwestern Manitoba. Geological Survey of Canada, Ottawa, Memoir 418, 38 p.
- Dredge, L.A., Ward, B.C. and Kerr, D.E., 1998. Surficial geology, Kikerk Lake, District of Mackenzie. Geological Survey of Canada, Ottawa, Map 1909A, Scale 1:125 000.
- Dubois, J.M.M., 1977. La déglaciation de la côte nord du Saint-Laurent: Analyse sommaire. Géographie physique et Quaternaire, 31: 229-246.
- Dubois, J.M.M., Demarais, G., Brouillette, D., Perras, S., Tremblay, G.L., Larivière, L., Denis, F. et Lassard, G., 1984. Géologie des formations en surface de la Mer de Goldthwait, côte nord du Saint-Laurent (Québec). Geological Survey of Canada, Ottawa, Open File 1045, Scale 1:250 000 (5 maps).
- Duval, M., 1993. Late Foxe glacial geology of the mid-bay area of Frobisher Bay, southeast Baffin Island, Northwest Territories. M.Sc. Thesis, University of Colorado, 103 p.
- Dyke, A.S., 1973. A geomorphological map and description of an emerged Pleistocene delta, Eastport Peninsula, Newfoundland. Maritime Sediments, 8: 68-72.

- Dyke, A.S., 1979a. Radiocarbon-dated Holocene emergence of Somerset Island, central Canadian Arctic. Geological Survey of Canada, Ottawa, Paper 79-1B, p. 307-318.
- Dyke, A.S., 1979b. Glacial and sea-level history of southwestern Cumberland Peninsula, Baffin Island, N.W.T., Canada. Arctic and Alpine Research, 11: 179-202.
- Dyke, A.S., 1983. Quaternary geology of Somerset Island, District of Franklin. Geological Survey of Canada, Ottawa, Memoir 404, 32 p.
- Dyke, A.S., 1984. Quaternary geology of Boothia Peninsula, District of Franklin, and northern District of Keewatin, central Canadian Arctic. Geological Survey of Canada, Ottawa, Memoir 407, 26 p.
- Dyke, A.S., 1993. Glacial and sea level history of Lowther and Griffith islands, Northwest Territories: A hint of tectonics. Géographie physique et Quaternaire, 47: 133-145.
- Dyke, A.S., 1998. Holocene delevelling of Devon Island, Arctic Canada: Implications for ice sheet geometry and crustal response. Canadian Journal of Earth Sciences, 35: 885-904.
- Dyke, A.S., 2000a. Surficial geology, Phillips Creek, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Map 1961A, Scale 1:250 000.
- Dyke, A.S., 2000b. Surficial geology, Milne Inlet, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Map 1962A, Scale 1:250 000.
- Dyke, A.S., 2000c. Surficial geology, Moffet Inlet and Fitzgerald Bay, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Map 1963A, Scale 1:250 000.
- Dyke, A.S., 2000d. Surficial geology, Arctic Bay, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Map 1964A, Scale 1:250 000.
- Dyke, A.S., 2000e. Surficial geology, Navy Board Inlet, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Map 1965A, Scale 1:250 000.
- Dyke, A.S., 2003a. Surficial geology, Murray Maxwell Bay (west), Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Open File 1612, Scale 1:50 000.
- Dyke, A.S., 2003b. Surficial geology, Murray Maxwell Bay (east), Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Open File 1613, Scale 1:50 000.
- Dyke, A.S., 2004a. An outline of the deglaciation of North America with emphasis on central and northern Canada, p. 373-424. *In* J. Ehlers and P.L. Gibbard, ed., Quaternary Glaciations-Extent and Chronology, Part II: North America. Elsevier, New York, 440 p.
- Dyke, A.S., 2004b. Surficial geology, Erichsen Lake, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Map 2066A, Scale 1:250 000.
- Dyke, A.S., 2006. Surficial geology, Steensby Inlet, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Map 2095A, Scale 1:250 000.
- Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J. and Veillette, J.J., 2002. The Laurentide and Innuitian ice sheets during the last glacial maximum. Quaternary Science Reviews, 21: 9-31.
- Dyke, A.S. and Dredge, L.A., 1989. Quaternary geology of the northwestern Canadian shield, p. 189-214. *In* R.J. Fulton, ed., Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Ottawa, Geology of Canada No. 1, 839 p.
- Dyke, A.S. and Hooper, M.J.G., 2000. Surficial geology, Berlinguet Inlet and Bourassa Bay, Baffin Island, Nunavut. Geological Survey of Canada, Ottawa, Map 1960A, Scale 1:250 000.
- Dyke, A.S., Morris, T.F. and Green, D.E.C., 1991. Postglacial tectonic and sea level history of the central Canadian Arctic. Geological Survey of Canada, Ottawa, Bulletin 397, 56 p.
- Dyke, A.S. and Peltier, W.R., 2000. Forms, response times and variability of relative sea level curves, glaciated North America. Geomorphology, 32, 315-334.
- Dyke, A.S. and Prest, V.K., 1987. Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Géographie physique et Quaternaire, 41: 237-263.
- Dyke, A.S. and Savelle, J.M., 2000. Major end moraines of Younger Dryas age on Wollaston Peninsula, Victoria Island, Canadian Arctic: Implications for climate and for formation of hummocky moraines. Canadian Journal of Earth Sciences, 37: 601-619.

- Dyke, A.S. and Savelle, J.M., 2002. Surficial geology, Innirit Hills, Victoria Island, Nunavut. Geological Survey of Canada, Ottawa, Open File 3756, Scale 1:50 000.
- Dyke, A.S. and Savelle, J.M., 2003a. Surficial geology, southern Prince Albert Sound, Victoria Island, Northwest Territories. Geological Survey of Canada, Ottawa, Open File 4321, Scale 1:50 000.
- Dyke, A.S. and Savelle, J.M., 2003b. Surficial geology, Linaluk Island, Victoria Island, Northwest Territories. Geological Survey of Canada, Ottawa, Open File 4319, Scale 1:50 000.
- Dyke, A.S. and Savelle, J.M., 2003c. Surficial geology, Woodward Point and Tahiryuak Lake areas, Victoria Island, Northwest Territories. Geological Survey of Canada, Ottawa, Open File 4320, Scale 1:50 000.
- Dyke, A.S. and Savelle, J.M., 2004a. Surficial geology, Page Point, Victoria Island, Northwest Territories. Geological Survey of Canada, Ottawa, Open File 4336, Scale 1:50 000.
- Dyke, A.S. and Savelle, J.M., 2004b. Surficial geology, Holman, Victoria Island, Northwest Territories. Geological Survey of Canada, Ottawa, Open File 4352, Scale 1:50 000.
- England, J., 1983. Isostatic adjustments in a full glacial sea. Canadian Journal of Earth Sciences, 20: 895-917.
- England, J., 1985. The late Quaternary history of Hall Land, northwest Greenland. Canadian Journal of Earth Sciences, 22: 1394-1408.
- England, J., 1990. The late Quaternary history of Greeley Fiord and its tributaries, west-central Ellesmere Island. Canadian Journal of Earth Sciences, 27: 255-270.
- England, J., 1996. Glacier dynamics and paleoclimatic change during the last glaciation of eastern Ellesmere Island, Canada. Canadian Journal of Earth Sciences, 33: 779-799.
- England, J. and Andrews, J.T., 1973. Broughton Island: A reference area for Wisconsin and Holocene chronology and sea level changes in eastern Baffin Island. Boreas, 2: 17-32.
- England, J., Atkinson, N., Dyke, A.S., Evans, D.J.A. and Zreda, M., 2004. Late Wisconsinan buildup and wastage of the Innuitian Ice Sheet across southern Ellesmere Island, Nunavut. Canadian Journal of Earth Sciences, 41: 39-61.
- England, J., Smith, I.R. and Evans, D.J.A., 2000. The last glaciation of east-central Ellesmere Island, Nunavut: ice dynamics, deglacial chronology and sea level change. Canadian Journal of Earth Sciences, 37: 1355-1371.
- Evans, D.J.A., 1990. The last glaciation and relative sea level history of northwest Ellesmere Island, Canadian High Arctic. Journal of Quaternary Science, 5: 67-82.
- Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342: 637-642.
- Fairchild, H.L., 1918. Postglacial uplift of northeastern America. Bulletin of the Geological Society of America, 29: 187-234.
- Farrand, W. and Gajda, R.T., 1962. Isobases on the Wisconsin marine limit in Canada. Geographical Bulletin, 17: 5-22.
- Friele, P.A. and Clague, J.J., 2002. Readvance of glaciers in the British Columbia Coast Mountains at the end of the last glaciation. Quaternary International, 87: 45-58.
- Fulton, R.J., 1987. Quaternary geology of the Ottawa region, Ontario and Quebec. Geological Survey of Canada, Ottawa, Paper 83-23, 47 p.
- Fulton, R.J. and Hodgson, D.A., 1979. Wisconsin glacial retreat, southern Labrador. Geological Survey of Canada, Ottawa, Paper 79-1C, p. 17-21.
- Funder, S., 1989. Quaternary geology of the ice-free areas and adjacent shelves of Greenland, p. 743-792. *In* R.J. Fulton, ed., Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Ottawa, Geology of Canada No. 1, 839 p.
- Funder, S., 1990. Scoresby Sund, sheet 12. Quaternary map of Greenland. Grønlands Geologiske Undersøgelse, Copenhagen, Scale 1:500 000.
- Fyles, J.G., 1963. Surficial geology of Victoria and Stefansson islands, District of Franklin. Geological Survey of Canada, Ottawa, Bulletin 101, 38 p.
- Gadd, N.R., 1973a. Quaternary geology of southwestern New Brunswick with particular reference to Fredericton area. Geological Survey of Canada, Ottawa, Paper 71-34, 31 p.

- Gadd, N.R., 1973b. Pleistocene geology of the central St. Lawrence Lowland (with selected passages from an unpublished manuscript "The St. Lawrence Lowland" by J.W. Goldthwait). Geological Survey of Canada, Ottawa, Memoir 328, 153 p.
- Giangioppi, M., Little, E.C., Ferbey, T., Ozyer, C.A. and Utting, D.J., 2003. Quaternary glaciomarine environments of Committee Bay, central mainland Nunavut. Geological Survey of Canada, Ottawa, Current Research 2003-C5, 12 p.
- Goldthwait, J.W., 1915. The occurrence of glacial drift on the Magdalen Islands. Geological Survey of Canada, Ottawa, Museum Bulletin 14, 11 p.
- Govare, É. and Gangloff, P., 1989. Paléoenvironnement d'une plage tardiglaciaire de 10 580 ans BP dans la région de Charlevoix, Québec. Géographie physique et Quaternaire, 43: 147-160.
- Grant, D.R., 1987. Quaternary geology of Nova Scotia and Newfoundland. International Quaternary Association, XII International Congress, Ottawa, Excursion Guide Book A-3/C-3, 62 p.
- Grant, D.R., 1989. Quaternary geology of the Atlantic Appalachian region of Canada, p. 393-440. *In* R.J. Fulton, ed., Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Ottawa, Geology of Canada No. 1, 839 p.
- Grant, D.R., 1992. Quaternary geology of St. Anthony-Blanc Sablon area, Newfoundland and Quebec. Geological Survey of Canada, Ottawa, Memoir 427, 60 p.
- Grant, D.R., 1994. Quaternary geology of Port Saunders map area, Newfoundland. Geological Survey of Canada, Ottawa, Paper 91-20, 59 p.
- Gray, J.T., Decker, V., Jull, T. and Gray, A., 2000. Morphological evidence for the late glacial invasion of the western flanks of the northern Labrador peninsula by Hudson Strait and Ungava Bay ice and <sup>14</sup>C dating of the Sheppard moraines. Institute of Arctic and Alpine Research, University of Colorado, Boulder, 30<sup>th</sup> International Arctic Workshop Abstracts, p. 74-75.
- Gray, J.T., Lauriol, B., Bruneau, D. and Picard, J., 1993. Postglacial emergence of Ungava Peninsula and its relationship to glacial history. Canadian Journal of Earth Sciences, 30: 1676-1696.
- Gualtieri, L. and England, J., 1998. The glacial and sea-level history of Darling Peninsula, eastern Ellesmere Island. Géographie physique et Quaternaire, 52: 349-359.
- Gulliksen, S., Heinemeier, J., Nydal, R., Rud, N., Skog, G., Thomsen, M.S. and Funder, S., 1991. 14C dating of samples collected during PONAM expeditions to east Greenland, p. 177-181. *In* P. Möller, C. Hjort and O. Ingolfsson, ed., The Last Interglacial-Glacial Cycle: Preliminary Report of the PONAM Fieldwork in Jameson Land and Scorseby Sund, East Greenland. Lundqua Report 33.
- Gutsell, J.E., Clague, J.J., Best, M.E., Bobrowsky, P.T. and Hutchinson, I., 2004. Architecture and evolution of a fjord-head delta, western Vancouver Island, British Columbia. Journal of Quaternary Science, 19: 497-511.
- Hanson, M.A., 2003. Late Quaternary glaciation, relative sea level history and recent coastal submergence of northeast Melville Island, Nunavut. M.Sc. thesis, University of Alberta, 108 p.
- Hattersley-Smith, G. and Long, A., 1967. Postglacial uplift at Tanquary Fiord, northern Ellesmere Island. Arctic, 20: 255-260.
- Henderson, E.P., 1972. Surficial geology of Avalon Peninsula, Newfoundland. Geological Survey of Canada, Ottawa, Memoir 368, 121 p.
- Hétu, B., 1998. La déglaciation de la région de Rimouski, Bas-Saint-Laurent (Québec): Indices d'une récurrence glaciaire dans la Mer de Goldthwait entre 12 400 et 12 000 BP. Géographie physique et Quaternaire, 52: 325-347.
- Hétu, B. and Gray, J.T., 2000. Les étapes de la déglaciation dans le nord de la Gaspésie (Québec): Les marges glaciaires des Dryas ancien et récent. Géographie physique et Quaternaire, 54: 5-40.
- Hillaire-Marcel, C., 1980. Multiple component postglacial emergence, eastern Hudson Bay, Canada, p. 215-230. *In* N.-A. Morner, ed., Earth Rheology, Isostasy and Eustasy, John Wiley and Sons, Chichester, 599 p.
- Hjort, C., 1979. Glaciation in northern East Greenland during the Late Weichselian and Early Flandrian. Boreas, 8: 281-296.

- Hjort, C., 1997. Glaciation, climate history, changing marine levels and the evolution of the Northeast Water polynya. Journal of Marine Systems, 10: 23-33.
- Hodgson, D.A., 1973. Landscape and late-glacial history, head of Vendom Fiord, Ellesmere Island. Geological Survey of Canada, Ottawa, Paper 73-1B: 129-136.
- Hodgson, D.A., 1977. A preliminary account of surficial materials, geomorphological processes, terrain sensitivity, and Quaternary history of King Christian and southern Ellef Ringnes islands, District of Franklin. Geological Survey of Canada, Ottawa, Paper 77-1A, p. 485-793.
- Hodgson, D.A., 1985. The last glaciation of west-central Ellesmere Island, Arctic Archipelago, Canada. Canadian Journal of Earth Sciences, 22: 347-368.
- Hodgson, D.A., 1992. Quaternary geology of western Melville Island, Northwest Territories. Geological Survey of Canada, Ottawa, Paper 89-21, 35 p.
- Hodgson, D.A., 1993. Surficial geology, Storkerson Peninsula, Victoria Island and Stefansson Island, District of Franklin, Northwest Territories. Geological Survey of Canada, Ottawa, Map 1817A, Scale 1:250 000.
- Hodgson, D.A., 1994. Episodic ice streams and ice shelves during retreat of the northwestern sector of the late Wisconsinan Laurentide Ice Sheet over the central Canadian Arctic Archipelago. Boreas, 23: 14-28.
- Hodgson, D.A. and Fulton, R.J., 1972. Site description, age and significance of a shell sample from the mouth of Michael River, 30 km south of Cape Harrison, Labrador. Geological Survey of Canada, Ottawa, Paper 79-1B, p. 102-105.
- Hodgson, D.A. and Haselton, G.M., 1974. Reconnaissance glacial geology, northeastern Baffin Island, Geological Survey of Canada, Ottawa, Paper 74-20, 10 p.
- Hodgson, D.A., Taylor, R.B. and Fyles, J.G., 1994. Late Quaternary sea level changes on Brock and Prince Patrick islands, western Canadian Arctic Archipelago. Géographie physique et Quaternaire, 48: 69-84.
- Hodgson, D.A. and Vincent, J.-S., 1984. A 10,000 yr BP extensive ice shelf over Viscount Melville Sound, Arctic Canada. Quaternary Research, 22: 18-30.
- Hodgson, D.A., Vincent, J.-S. and Fyles, J.G., 1984. Quaternary geology of central Melville Island, Northwest Territories. Geological Survey of Canada, Ottawa, Paper 83-16, 25 p.
- Hooper, M.J.G., 1996. Glacial history and Holocene sea level regression in the Foxe/Baffin sector of the Laurentide Ice Sheet, northwest Baffin Island, arctic Canada. Ph.D. thesis, University of Alberta, 195 p.
- Hooper, M.J.G. and Dyke, A.S., 2000. Surficial geology, Agu Bay and Easter Cape, Nunavut. Geological Survey of Canada, Ottawa, Map 1959A, Scale 1:250 000.
- Howes, D.E., 1981. Late Quaternary sediments and geomorphic history of north-central Vancouver Island. Canadian Journal of Earth Sciences, 18: 1-12.
- Ingolfsson, O., Frich, P., Funder, S. and Humlum, O., 1990. Paleoclimatic implications of an early Holocene glacier advance on Disko Island, west Greenland. Boreas, 19: 297-311.
- Ives, J.D., 1963. Determination of the marine limit in eastern Arctic Canada. Geographical Bulletin, 19: 117-122.
- Ives, J.D., 1964. Deglaciation and land emergence in northeastern Foxe Basin, N.W.T. Geographical Bulletin, 21: 54-65.
- Jacobs, J.D., Mode, W.N., Squires, C.A. and Miller, G.H., 1985. Holocene environmental change in the Frobisher Bay area, Baffin Island, N.W.T. Géographie physique et Quaternaire, 39: 151-162.
- Jenness, S., 1960. Late Pleistocene glaciation of eastern Newfoundland. Geological Society of America Bulletin, 71: 161-180.
- Johnson, J.P. Jr., 1969. Deglaciation of the central Nain-Okak section of Labrador. Arctic, 22: 373-394.
- Jordan, J.W., 2001. Late Quaternary sea level changes in southern Beringia: Postglacial emergence of the western Alaska Peninsula. Quaternary Science Reviews, 20: 509-523.
- Josenhans, H., Fedje, D., Pienitz, R. and Southon, J., 1997. Early humans and rapidly changing Holocene sea levels in the Queen Charlotte Islands-Hecate Strait, British Columbia, Canada. Science, 277: 71-74.

- Kaplan, M. and Miller, G.H., 2003. Early Holocene delevelling and deglaciation of the Cumberland Sound region, Baffin Island, arctic Canada. Geological Society of America Bulletin, 115: 445-462.
- Kaufman, D.S. and Williams, K.M., 1992. Radiocarbon date list VII: Baffin Island, N.W.T., Canada. Institute of Arctic and Alpine Research, University of Colorado, Boulder, Occasional Paper 48, 82 p.
- Kaye, C.A. and Braghorn, E.S., 1964. Late Quaternary sea-level change and crustal rise at Boston, Massachusetts, with notes on the autocompaction of peat. Geological Society of America Bulletin, 75: 63-80.
- Kelly, M., 1973. Radiocarbon dated shell samples from Nordre Stromfjord, West Greenland, with comments on models of glacio-isostatic uplift. Grønlands Geologiske Undersøgelse, Copenhagen, Rapport 59, 20 p.
- Kelly, M., 1985. A review of the Quaternary geology of western Greenland, p. 461-501. In J.T. Andrews, ed., Quaternary Environments: Eastern Canadian Arctic, Baffin Bay and West Greenland. Allen and Unwin, Boston, 774 p.
- Kelly, M. and Bennike, O., 1992. Quaternary geology of western and central North Greenland. Grønlands Geologiske Undersøgelse, Copenhagen, Rapport 153, 34 p.
- Kelly, M., Funder, S., Houmark-Nielsen, M., Knudsen, K.L., Kronborg, C., Landvik, J. and Sorby, L., 1999. Quaternary glacial and marine environmental history of northwest Greenland: A review and reappraisal. Quaternary Science Reviews, 18: 373-392.
- Kerr, D.E., 1994. Late Quaternary stratigraphy and depositional history of the Parry Peninsula-Perry River area, District of Mackenzie, Northwest Territories. Geological Survey of Canada, Ottawa, Bulletin 465, 34 p.
- Kerr, D.E., 1996. Late Quaternary sea-level history in the Paulatuk to Bathurst Inlet area, Northwest Territories. Canadian Journal of Earth Sciences, 33: 389-403.
- Kerr, D.E., Dredge, L.A. and Ward, B.C., 1997. Surficial geology, Coppermine (east half), District of Mackenzie, Northwest Territories. Geological Survey of Canada, Ottawa, Map 1910A, Scale 1:125 000.
- King, C.A.M., 1969. Glacial geomorphology and chronology of Henry Kater Peninsula, east Baffin Island, N.W.T. Arctic and Alpine Research, 1: 195-212.
- King, C.A.M. and Buckley, J.T., 1967. The chronology of deglaciation around Eqe Bay and Lake Gillian, Baffin Island, N.W.T. Geographical Bulletin, 9: 20-32.
- Klassen, R.A., 1993. Quaternary geology and glacial history of Bylot Island, Northwest Territories. Geological Survey of Canada, Ottawa, Memoir 429, 93 p.
- Klassen, R.W., 1983. Lake Agassiz and the late glacial history of northern Manitoba, p. 97-115. *In* J.T. Teller and L. Clayton, ed., Glacial Lake Agassiz. Geological Association of Canada, St. John's, Special Paper 26, 451 p.
- Klassen, R.W., 1986. Surficial geology of north-central Manitoba. Geological Survey of Canada, Ottawa, Memoir 419, 57 p.
- Koteff, C., Robinson, G.R., Goldsmith, R. and Thompson, W.B., 1993. Delayed postglacial uplift and synglacial sea levels in coastal central New England. Quaternary Research, 40: 46-54.
- Kovanen, D.J. and Slaymaker, O., 2004. Relict shorelines and ice flow patterns of the northern Puget Lowland from Lidar data and digital terrain modelling. Geografiska Annaler, 86A: 385-400.
- Lamothe, M., 1992. Pleistocene stratigraphy and till geochemistry of the Miramichi zone, New Brunswick. Geological Survey of Canada, Ottawa, Bulletin 433, 58 p.
- Lamoureux, S. and England, J.H., 2000. Late Wisconsinan glaciation of the central sector of the Canadian High Arctic. Quaternary Research, 54: 182-188.
- Landvik, J.Y., 1994. The last glaciation of Germania Land and adjacent areas, northeast Greenland. Journal of Quaternary Science, 9: 81-92.
- Landvik, J.Y., Weidick, A. and Hansen, A., 2001. The glacial history of the Hans Taussen Iskappe and the last glaciation of Peary Land, North Greenland, p. 27-44. *In* C.U. Hammer, ed., The Hans Taussen Ice Cap. Meddelelser om Grønland, Geoscience 39, 163 p.
- LaSalle, P. and Shilts, W.W., 1993. Younger Dryas age readvances of Laurentide ice into the Champlain Sea. Boreas, 22: 25-37.

- Lauriol, B., 1982. Géomorphologie Quaternaire du sud de l'Ungava. Paléo-Québec 15, Montréal, 174 p.
- Laymon, C., 1988. Glacial geology of western Hudson Strait, Canada, with reference to Laurentide Ice Sheet dynamics. Ph.D. thesis, University of Colorado, 345 p.
- Leckie, D.A. and McCann, S.B., 1983. Late Quaternary glacial history of the Hermitage area of southern Newfoundland. Canadian Journal of Earth Sciences, 20: 399-408.
- Lee, H.A., 1959. Surficial geology of southern District of Keewatin and the Keewatin ice divide, Northwest Territories. Geological Survey of Canada, Ottawa, Bulletin 51, 42 p.
- Lee, H.A., 1962. Surficial geology of Rivière-du-Loup-Trois-Pistoles area, Quebec. Geological Survey of Canada, Ottawa, Paper 61-32, 2 p.
- Lee, H.A., 1968. Quaternary geology, p. 503-543. In C.S. Beals and D.A. Shenstone, ed., Science, History, and Hudson Bay, 2. Department of Energy, Mines and Resources, Ottawa, 1057 p.
- Lemmen, D.S., 1989. The last glaciation of Marvin Peninsula, northern Ellesmere Island, High Arctic Canada. Canadian Journal of Earth Sciences, 26: 2578-2590.
- Lemmen, D.S., Aitken, A.E. and Gilbert, R., 1994. Early Holocene deglaciation of Expedition and Strand fiords, Canadian High Arctic. Canadian Journal of Earth Sciences, 31: 943-958.
- Liverman, D.G.E., 1994. Relative sea-level history and isostatic rebound in Newfoundland. Boreas, 23: 217-230.
- Locat, J., 1977. L'émersion des terres dans la région de Baie-des-sableñTroispistoles, Québec. Géographie physique et Quaternaire, 31: 297-306.
- Løken, O., 1962. The late and postglacial emergence and the deglaciation of northernmost Labrador. Geographical Bulletin, 17: 23-56.
- Long, A.J. and Roberts, D.H., 2003. Late Weichselian deglacial history of Disko Bugt, West Greenland, and the dynamics of the Jakobshavn Isbrae ice stream. Boreas, 32: 208-226.
- Long, A.J., Roberts, D.H. and Rasch, M., 2003. New observations on the relative sea level and deglacial history of Greenland from Innaarsuit, Disko Bugt. Quaternary Research, 60: 162-171.
- Long, A.J., Roberts, D.H. and Wright, M.R., 1999. Isolation basin stratigraphy and Holocene relative sea-level change on Arveprinsen Ejland, Disko Bugt, West Greenland. Journal of Quaternary Science, 14: 323-345.
- Lowdon, J.A. and Blake, W. Jr., 1981. Geological Survey of Canada radiocarbon dates XXI. Geological Survey of Canada, Ottawa, Paper 81-7, 22 p.
- Manley, W.F., 1996. Late glacial flow pattern, deglaciation, and postglacial emergence of south-central Baffin Island and the north-central coast of Hudson Strait. Canadian Journal of Earth Sciences, 33: 1499-1510.
- Manley, W.F. and Jennings, A.E., 1996. Radiocarbon date list VIII: Eastern Canadian Arctic, Labrador, northern Quebec, East Greenland shelf, Iceland shelf, and Antarctica. Institute of Arctic and Alpine Research, University of Colorado, Boulder, Occasional Paper 50, 163 p.
- Manley, W.F. and Miller, G.H., 2001. Glacial-geological record on southern Baffin Island reflecting late glacial ice-sheet dynamics in the eastern Hudson Strait region, p. 19-30. *In* B. MacLean, ed., Marine Geology of Hudson Strait and Ungava Bay, Eastern Canadian Arctic: Late Quaternary Sediments, Depositional Environments, and Late-Glacial History Derived from Marine and Terrestrial Studies. Geological Survey of Canada, Ottawa, Bulletin 566, 193 p.
- Mann, D.H., 1986. Wisconsin and Holocene glaciation of southeast Alaska, p. 237-265. In T.D. Hamilton, K.M. Reed and R.M. Thorson, ed., Glaciation in Alaska: The Geologic Record. Alaska Geological Society, Anchorage, 264 p.
- Marcoux, N. and Richard, P.J.H., 1995. Végétation et fluctuations climatique postglaciaire sur la côte septentrionale gaspésienne, Québec. Revue Canadienne des Sciences de la Terre, 32: 79-96.
- Mathews, W.H., Fyles, J.G. and Nasmith, H.W., 1970. Postglacial crustal movements in southwestern British Columbia and adjacent Washington State. Canadian Journal of Earth Sciences, 7: 690-702.
- Matthews, B., 1967. Late Quaternary land emergence in northern Ungava, Quebec. Arctic, 20: 176-202.

- McCuaig, S.J., 2003. Glacial history and Quaternary geology of the White Bay region. Current Research (2003), Newfoundland Department of Mines and Energy, St. John's, Geological Survey Report 03-1, p. 279-292.
- McDonald, B.C., 1969. Surficial geology of La Patrie-Sherbrooke area, Quebec, including Eaton River watershed. Geological Survey of Canada, Ottawa, Paper 67-52, 21 p.
- McLaren, P. and Barnett, D.M., 1978. Holocene emergence of the south and east coasts of Melville Island, Queen Elizabeth Islands, Northwest Territories, Canada. Arctic, 31: 415-427.
- McNeely, R., 2002. Geological Survey of Canada radiocarbon date list XXIII. Geological Survey of Canada, Ottawa, Current Research, 51 p.
- Miller, G.H., 1973. Late-Quaternary glacial and climatic history of northern Cumberland Peninsula, Baffin Island, N.W.T., Canada. Quaternary Research, 3: 561-583.
- Miller, G.H., 1979. Radiocarbon date list IV, Baffin Island. Institute of Arctic and Alpine Research, University of Colorado, Boulder, Occasional Paper 29, 61 p.
- Miller, G.H., 1980. Late Foxe glaciation of southern Baffin Island, N.W.T., Canada. Geological Society of America Bulletin, Part 1, 91: 399-405.
- Miller, G.H., Andrews, J.T. and Short, S.K., 1977. The last interglacial-glacial cycle, Clyde Foreland, Baffin Island, N.W.T.: Stratigraphy, biostratigraphy and chronology. Canadian Journal of Earth Sciences, 14: 2824-2857.
- Miller, R.D., 1973. The Gastineau Channel Formation, a composite glaciomarine deposit near Juneau, Alaska. United States Geological Survey, Reston, Bulletin 1394-C, 24 p.
- Occhietti, S., 1976. Dépôts et faits quaternaires du bas-St-Maurice, Québec (2<sup>ième</sup> partie). Geological Survey of Canada, Ottawa, Current Research 76-1C, p. 217-220.
- Occhietti, S., 1989. Quaternary geology of the St. Lawrence valley and adjacent Appalachian subregion, p. 350-379. *In* R.J. Fulton, ed., Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Ottawa, Geology of Canada No. 1, 839 p.
- Occhietti, S., Parent, M., Shilts, W.W., Dionne, J.-C., Govare, É. and Harmand, D., 2001. Late Wisconsinan glacial dynamics, deglaciation, and marine invasion in southern Quebec, p. 243-270. *In* T.K. Weddle and M.J. Retelle, ed., Deglacial History and Relative Sea Level Changes, Northern New England and Adjacent Canada. Geological Society of America, Boulder, Special Paper 351, 292 p.
- O'Cofaigh, C., England, J. and Zreda, M., 2000. Late Wisconsinan glaciation of southern Eureka Sound: Evidence for extensive Innuitian ice in the Canadian High Arctic during the last glacial maximum. Quaternary Science Reviews, 19: 1319-1341.
- Painchaud, A., Dubois, J.M.M. and Gwyn, Q.H.J., 1984. Déglaciation et émersion des terres de l'ouest de l'île d'Anticosti, Golfe du Saint-Laurent, Québec. Géographie physique et Quaternaire, 38: 93-111.
- Pair, D.L. and Rodrigues, C.G., 1993. Late Quaternary deglaciation of the southwestern St. Lawrence Lowland, New York and Ontario. Geological Society of America Bulletin, 105: 1151-1164.
- Parent, M. and Occhietti, S., 1988. Late Wisconsinan deglaciation and Champlain Sea invasion in the St. Lawrence valley, Quebec. Géographie physique et Quaternaire, 42: 215-246.
- Pheasant, D.R. and Andrews, J.T., 1973. Wisconsin glacial chronology and relative sea-level movements, Narpaing Fiord, Broughton Island area, eastern Baffin Island, N.W.T. Canadian Journal of Earth Sciences, 10: 1621-1641.
- Prest, V.K., 1952. Notes on the geology of parts of Ellesmere and Devon islands, Northwest Territories. Geological Survey of Canada, Ottawa, Paper 52-32, 15 p.
- Prest, V.K., 1973. Surficial deposits of Prince Edward Island. Geological Survey of Canada, Ottawa, Map 1366A, Scale 1:126 720.
- Prest, V.K., Grant, D.R., Borns, H.W., Brookes, I.A., MacNiell, R.H. and Ogden, J.G. III, 1972. Quaternary geology, geomorphology, and hydrogeology of the Atlantic Provinces. International Geological Congress Field Excursion A61-C61 Guidebook, 79 p.

- Prest, V.K., Grant, D.R. and Rampton, V., 1968. Glacial map of Canada. Geological Survey of Canada, Ottawa, Map 1253A, Scale 1:5 000 000.
- Rampton, V., Gauthier, R.C., Thibault, J. and Seaman, A.A., 1984. Quaternary geology of New Brunswick. Geological Survey of Canada, Ottawa, Memoir 416, 77 p.
- Reger, R.D., Pinney, D.S., Burke, R.M. and Wiltse, M.A., 1996. Cataloq and initial analysis of geological data related to Middle and Late Quaternary deposits, Cook Inlet region, Alaska. Alaska Division of Geological and Geophysical Surveys, Anchorage, Report of Investigations 95-6, 188 p.
- Retelle, M.J., 1986. Glacial geology and Quaternary marine stratigraphy of the Robeson Channel area, northeastern Ellesmere Island, Northwest Territories. Canadian Journal of Earth Sciences, 23: 1001-1012.
- Richard, P.J.H. and Occhietti, S., 2005. <sup>14</sup>C chronology for ice retreat and inception of Champlain Sea in the St. Lawrence Lowlands, Canada. Quaternary Research, 63: 353-358.
- Ridge, J.C., 2004. The Quaternary glaciation of western New England with correlations to surrounding areas, p. 169-199. *In J.* Ehlers and P.L. Gibbard, ed., Quaternary Glaciations-Extent and Chronology, Part II: North America. Elsevier, New York, 440 p.
- Ridge, J.C., Besonen, M.R., Brochu, M., Brown, S.L., Callaghan, J.W., Cook, G.J., Nicholson, R.S. and Toll, N.J. 1999. Varve, paleomagnetic, and <sup>14</sup>C chronologies for late Pleistocene events in New Hampshire and Vermont (U.S.A.). Géographie physique et Quaternaire, 53: 79-106.
- Rogerson, R.J., 1977. Glacial geomorphology and sediments of the Porcupine Strand, Labrador, Canada. Ph.D. thesis, Macquarie University, 276 p.
- Rogerson, R.J. and Tucker, C.M., 1972. Observations on the glacial history of the Avalon Peninsula. Maritime Sediments, 8: 25-31.
- Sharpe, D.R., 1992. Quaternary geology of Wollaston Peninsula, Victoria Island, Northwest Territories. Geological Survey of Canada, Ottawa, Memoir 434, 84 p.
- Shaw, J., Gareau, P. and Courtney, R.C, 2002. Palaeogeography of Atlantic Canada 13-0 kyr. Quaternary Science Reviews, 21: 1861-1878.
- Sim, V.W., 1964. Terrain analysis of west-central Baffin Island, N.W.T. Geographical Bulletin, 21: 66-92.
- Skinner, R.G., 1973. Quaternary stratigraphy of the Moose River basin, Ontario. Geological Survey of Canada, Ottawa, Bulletin 225, 77 p.
- Smith, D.G., 1992. Glacial Lake Mackenzie, Mackenzie Valley, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 29: 1756-1766.
- Smith, D.G., 1994. Glacial Lake McConnell: Paleogeography, age, duration and associated river deltas, Mackenzie River basin, western Canada. Quaternary Science Reviews, 13: 829-843.
- Smith, I.R., 1999. Late Quaternary glacial history of Lake Hazen basin and eastern Hazen plateau, northern Ellesmere Island, Nunavut, Canada. Canadian Journal of Earth Sciences, 36: 1547-1565.
- Somerville, A.A., 1997. The late Quaternary history of Terra Nova National Park and vicinity, northeast Newfoundland. M.Sc. thesis, Memorial University of Newfoundland, 152 p.
- Stea, R.R., Fader, G.B.J., Scott, D.B. and Wu, P., 2001. Glaciation and relative sea level change in Maritime Canada, p. 35-49. *In* T.K. Weddle and M.J. Retelle, ed., Deglacial History and Relative Sea Level Changes, Northern New England and Adjacent Canada. Geological Society of America, Boulder, Special Paper 351, 292 p.
- Stea, R.R. and Wightman, D.M., 1987. Age of the Five Islands Formation, Nova Scotia, and the deglaciation of the Bay of Fundy. Quaternary Research, 27: 211-219.

- Stewart, D.P. and MacClintock, P., 1969. The surficial geology and Pleistocene history of Vermont. Vermont Geological Survey Bulletin 31, 251 p.
- Stone, B.D. and Peper, J.D., 1982. Topographic control of the deglaciation of eastern Massachusetts: Ice lobation and marine incursion, p. 145-166. *In* G.J. Larson and B.D. Stone, ed., Late Wisconsinan Glaciation of New England. Kendall/Hunt Publishing Company, Dubuque, 242 p.
- St-Onge, D.A. and McMartin, I., 1995. Quaternary geology of the Inman River area, Northwest Territories. Geological Survey of Canada, Ottawa, Bulletin 446, 59 p.
- Stravers, J.A., Miller, G.H. and Kaufman, D.S., 1992. Late glacial ice margins and deglacial chronology for southeastern Baffin Island and Hudson Strait, eastern Canadian Arctic. Canadian Journal of Earth Sciences, 29: 1000-1017.
- Stravers, J.A. and Syvitski, J.P.M., 1991. Land-sea correlations and evolution of the Cambridge Fiord marine basin during the last deglaciation of northern Baffin Island. Quaternary Research, 25: 72-90.
- Ten Brink, N.W., 1974. Glacio-isostasy: New data from West Greenland and geophysical implications. Geological Society of America Bulletin, 85: 219-228.
- Thompson, W.B., Crossen, K.J., Born, H.W. Jr. and Anderson, B.G., 1989. Glaciomarine deltas of Maine and their relation to late Pleistocene-Holocene crustal movements, p. 43-67. *In* W.A. Anderson and H.W. Borns Jr., ed., Neotectonics of Maine. Maine Geological Survey, Augusta, Bulletin 40, 227 p.
- Thorleifson, L.H., 1996. Review of Lake Agassiz history p. 55-84. *In* J.T. Teller, L.H. Thorleifson, G. Matile and W.C. Brisbin, ed., Sedimentology, Geomorphology, and History of the Central Lake Agassiz Basin. Geological Association of Canada, St. John's, Fieldtrip Guidebook B2, 101 p.
- Thorson, R., 1980. Ice-sheet glaciation of the Puget Lowland, Washington, during the Vashon Stade (Late Pleistocene). Quaternary Research, 13: 303-321.
- Tucker, C.M., 1974. A series of raised Pleistocene deltas, Halls Bay, Newfoundland. Maritime Sediments, 10: 1-7.
- Tucker, C.M., Leckie, D.A. and McCann, S.B., 1982. Raised shoreline phenomena and postglacial emergence in south-central Newfoundland. Géographie physique et Quaternaire, 36: 165-174.
- Twenhofel, W.H., 1947. The Silurian of eastern Newfoundland with some data relating to physiography and Wisconsin glaciation of Newfoundland. American Journal of Science, 245: 65-122.
- Veillette, J.J., 1994. Evolution and paleohydrology of glacial lakes Barlow and Ojibway. Quaternary Science Reviews, 13: 945-971.
- Veillette, J.J. and Cloutier, M., 1993. Géologie des formations en surface, Gaspésie, Québec. Geological Survey of Canada, Ottawa, Map 1804A, Scale 1:250 000.
- Vincent, J.-S., 1977. Le Quaternaire récent de la région du cours inférieur de la Grande Rivière, Québec. Geological Survey of Canada, Ottawa, Current Research 76-19, 20 p.
- Vincent, J.-S., 1983. La géologie du Quaternaire et la géomorphologie de l'Ile Banks, Arctique canadien. Geological Survey of Canada, Ottawa, Memoir 405, 118 p.
- Vincent, J.-S., 1989. Quaternary geology of the southeastern Canadian shield, p. 249-275. *In* R.J. Fulton, ed., Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Ottawa, Geology of Canada No. 1, 839 p.
- Washburn, A.L., 1947. Reconnaissance geology of portions of Victoria Island and adjacent regions, Arctic Canada. Geological Society of America, Boulder, Memoir 22, 142 p.

# APPENDIX

| Locality                       | Latitude   | Longitude   | Marine Limit         | Reference                                                |
|--------------------------------|------------|-------------|----------------------|----------------------------------------------------------|
| Rivière Boniface               | 57.600000  | -76.250000  | 175                  | Allard and Rousseau (1999)                               |
| Lac Werden                     | 56.600000  | -75.750000  | 206                  | Allard and Seguin (1985)                                 |
| Rivière Nataspoka              | 56.891667  | -76.425000  | 240                  | Allard and Seguin (1985)                                 |
| Rivière Ouiatchouane           | 56.050000  | -75.350000  | 217                  | Allard and Seguin (1985)                                 |
| Elson Point                    | 58.875000  | -65.983333  | 100                  | Allard <i>et al.</i> (1989)                              |
| Lac Qarlik                     | 58.900000  | -65.500000  | 87                   | Allard <i>et al.</i> (1989)                              |
| Weymouth Fiord                 | 59.400000  | -65.250000  | 62                   | Allard <i>et al</i> . (1989)                             |
| Goose Valley                   | 73.166667  | -79.883333  | 35                   | Allard (1997)                                            |
| Gould Pond (Dexter)            | 44.983333  | -69.316667  | ' 115                | Anderson <i>et al.</i> (1992)                            |
| Kangok Fiord North             | 68.633333  | -68.400000  | ) 55                 | Andrews and Drapier (1967)                               |
| Loozie Bay                     | 68.783333  | -68.616667  | 61                   | Andrews and Drapier (1967)                               |
| Kangok Fiord head              | 68.600000  | -68.916667  | 34                   | Andrews and Drapier (1967), Andrews <i>et al.</i> (1970) |
| Tingin Fiord head              | 68.950000  | -69.116667  | ′ 86                 | Andrews and Drapier (1967), Andrews <i>et al.</i> (1970) |
| Piling Lake                    | 68.933333  | -74.133333  | 8 82                 | Andrews and Drapier (1967), Dredge (2003c)               |
| Gilmour Island                 | 59.833333  | -80.000000  | 155                  | Andrews and Falconer (1969)                              |
| Bella Bella                    | 52.150000  | -128.100000 | 120                  | Andrews and Retherford (1978)                            |
|                                | 52.380000  | -126.750000 | 165                  | Andrews and Retherford (1978)                            |
| Cape Hooper                    | 60.433333  | -00./0000/  | 40                   | Andrews et al. (1970)                                    |
| Rangok Flord Houlin            | 60.0000000 | -00.400000  | , 79<br>, 55         | Andrews et al. (1970)                                    |
| Pitchforth Fiord boad          | 69.010007  | -07.0000000 | 5 55<br>7 60         | Andrews et al. (1970)                                    |
|                                | 68 866667  | -69.4500007 | 09                   | And rows at al. $(1970)$                                 |
| Tikkinatsianak Island          | 57 200000  | -61 750000  | 78                   | Andrews (1963) $\Delta$                                  |
| limiakorvik Lale               | 57 500000  | -62 800000  | 94                   | Andrews (1963)                                           |
| Fellside Lake                  | 70 016000  | -77 670000  | , <u>91</u>          | Andrews (1966)                                           |
| Isortog River                  | 70.030000  | -76.830000  | 69                   | Andrews (1966)                                           |
| Astarte River                  | 69,116667  | -75.033333  | 83                   | Andrews (1970b)                                          |
| Flint Lake head                | 69.366667  | -74.000000  | 40                   | Andrews (1970b)                                          |
| North Tweedsmuir Island        | 68.616667  | -74.700000  | 106                  | Andrews (1970b)                                          |
| Kingnait Harbour               | 66.050000  | -65.266667  | 72                   | Andrews (1975)                                           |
| Cape Nathorst                  | 77.933333  | -99.900000  | 60                   | Atkinson and England (2004)                              |
| Gunnars Island South           | 77.291667  | -85.383333  | 85                   | Atkinson (1999)                                          |
| Svante Fiord mouth             | 77.608333  | -84.983333  | 8 107                | Atkinson (1999)                                          |
| Svendsen Peninsula             | 77.543333  | -84.500000  | 87                   | Atkinson (1999)                                          |
| Hoved Island                   | 77.533333  | -85.216667  | 102                  | Atkinson (1999), England <i>et al.</i> (2004)            |
| Cape Sverre                    | 78.766667  | -97.666667  | ' 106                | Atkinson (2003)                                          |
| Panarctic Amund Central Dome   | 78.325000  | -96.250000  | 100                  | Atkinson (2003)                                          |
| Kanairiktok River              | 54.816667  | -60.733333  | 3 100                | Awadallah and Batterson (1990)                           |
| Moran Lake                     | 54.550000  | -60.783333  | 125                  | Awadallah and Batterson (1990)                           |
| Coats Island                   | 62.900000  | -82.000000  | ) 124                | Aylsworth and Shilts (1991)                              |
| Kinga Lake                     | 61.933333  | -96.465278  | 170                  | Aylsworth <i>et al.</i> (1986)                           |
| Clyde Inlet head               | 69.850000  | -70.466667  | 61                   | Barnett in Andrews and Drapier (1967)                    |
| Inugsuin Flord nead            | 69.633333  | -70.033333  | 68<br>175            | Barnett in Andrews and Drapier (1967)                    |
|                                | 46.020000  | -77.450000  | 175                  | Barriell (1988)                                          |
| Boidville (Junction Br)        | 49.123050  | -57.932500  | 0 00                 | Batterson and Catte (2001)                               |
| Dildo South                    | 49.250000  | -57.565555  | ) 40<br>) 1 <i>1</i> | Batterson and Taylor (2001)                              |
| Hearts Content                 | 47 870000  | -53,380000  | , 1 <del>1</del>     | Batterson and Taylor (2003)                              |
| Hearts Delight                 | 47 770000  | -53 470000  | 12                   | Batterson and Taylor (2003)                              |
| Southern Harbour               | 47,750000  | -54.000000  | ) 13                 | Batterson and Taylor (2003)                              |
| Clements Markham Inlet, middle | 82.800000  | -66.916667  | 110                  | Bednarski (1986)                                         |
| Clements Markham Inlet, mouth  | 82.900000  | -66.416667  | · 95                 | Bednarski (1986)                                         |
| Gvpsum River                   | 82.700000  | -68.116667  | ′ 124                | Bednarski (1986)                                         |
| Hare Fiord                     | 81.083333  | -85.233333  | 3 110                | Bednarski (1995)                                         |
| Hvitland Peninsula             | 81.100000  | -87.200000  | 116                  | Bednarski (1995)                                         |
| Jugeborg Fiord                 | 81.316667  | -89.700000  | 135                  | Bednarski (1995)                                         |
| Allison Point                  | 75.100702  | -99.134490  | ) 114                | Bednarski (1996)                                         |
| Dundee Bight                   | 75.967403  | -99.301257  | ' 116                | Bednarski (1996)                                         |
| Dyke Acland Bay                | 75.004993  | -98.995741  | 114                  | Bednarski (1996)                                         |
| Freemans Cove                  | 75.129384  | -98.103609  | 107                  | Bednarski (1996)                                         |
| Hooker Bay                     | 75.349836  | -99.851901  | 105                  | Bednarski (1996)                                         |

| Locality                     | Latitude   | Longitude   | Marine Limit  | Reference                                                                   |
|------------------------------|------------|-------------|---------------|-----------------------------------------------------------------------------|
| lle Vanier                   | 76.258000  | -102.313000 | 106           | Bednarski (1996)                                                            |
| Massey Island                | 76.084087  | -102.550972 | 110           | Bednarski (1996)                                                            |
| Schomberg Point              | 75.550728  | -102.750928 | 111           | Bednarski (1996)                                                            |
| Truro Island                 | 75.316667  | -97.166667  | 107           | Bednarski (1996)                                                            |
| Walker River                 | 75.950741  | -97.867791  | 111           | Bednarski (1996)                                                            |
| Flat Sound                   | 80.266667  | -89.250000  | 143           | Bednarski (1998)                                                            |
| Lightfoot River              | 80.716667  | -91.000000  | 110           | Bednarski (1998)                                                            |
| Rens Lake                    | 81.083333  | -92.250000  | 84            | Bednarski (1998)                                                            |
| Schei Peninsula West         | 80.366667  | -88.550000  | 156           | Bednarski (1998)                                                            |
| Stang Bay                    | 80.416667  | -89.483333  | 143           | Bednarski (1998)                                                            |
| Nachvak Fiord inner          | 59.050000  | -63.950000  | 55            | Bell <i>et al.</i> (1989)                                                   |
| Nachvak Fiord mouth          | 59.060000  | -63.330000  | 68            | Bell <i>et al.</i> (1989)                                                   |
| Cape St George               | 48.466666  | -59.250000  | 65            | Bell <i>et al.</i> (2003)                                                   |
| Stephenville                 | 48.416667  | -58.466667  | 27            | Bell <i>et al.</i> (2003)                                                   |
| Black Top Ridge              | 80.250000  | -85.033333  | 149           | Bell (1996)                                                                 |
| Blue Man Cape                | 79.800000  | -80.300000  | 140           | Bell (1996)<br>Bell (1996)                                                  |
| Hot Weather Creek            | 79.733333  | -00./00000  | 149           | Bell (1996)<br>Bell (1996)                                                  |
| Remus Creek North            | 79.900007  | -85 361667  | 145           | Bell (1996)                                                                 |
| Romulus Lake                 | 79.850000  | -85 283333  | 140           | Bell (1996)                                                                 |
| Troelsen Bidge               | 80.066667  | -86 566667  | 152           | Bell (1996)                                                                 |
| Danmark Fiord head           | 80 516667  | -23 500000  | 35            | Bennike and Weidick (2001)                                                  |
| Holm Land Northeast          | 80.500000  | -16.000000  | 80            | Bennike and Weidick (2001)                                                  |
| lle de France                | 77.846667  | -17.766667  | 60            | Bennike and Weidick (2001)                                                  |
| Island off Sanddalen         | 78.126667  | -20.300000  | 40            | Bennike and Weidick (2001)                                                  |
| Kilen                        | 81.166667  | -14.000000  | 80            | Bennike and Weidick (2001)                                                  |
| Lambertland                  | 79.231667  | -19.095000  | 65            | Bennike and Weidick (2001)                                                  |
| Nioghalvfjerdsfjorden inner  | 79.586667  | -21.681667  | 40            | Bennike and Weidick (2001)                                                  |
| Nioghalvfjerdsfjorden mouth  | 79.748333  | -18.860000  | 65            | Bennike and Weidick (2001)                                                  |
| Disko Fiord                  | 69.483333  | -53.466667  | 83            | Bennike <i>et al</i> . (1994)                                               |
| Disko Fiord mouth            | 69.433333  | -54.350000  | 69            | Bennike <i>et al.</i> (1994)                                                |
| Disko Island Northwest       | 70.266667  | -54.616667  | 60            | Bennike et al. (1994)                                                       |
| Bronlundhus                  | 82.183333  | -30.533333  | 65            | Bennike (1987)                                                              |
| Kolelv West                  | 82.150000  | -29.633333  | 80            | Bennike (1987)                                                              |
| Cass Flord                   | 80.116667  | -65.200000  | 65            | Bennike (2002)                                                              |
| Humboldt Glacier             | 79.941667  | -04.285000  |               | Bennike (2002)                                                              |
| Lafavette Bay                | 80 311667  | -03.341007  | 90            | Bennike (2002)                                                              |
| Rivière-à-la-Chaloupe        | 50 287500  | -65 121111  | 90<br>91      | Bigras and Dubois (1987)                                                    |
| Dover                        | 43 224000  | -70 960000  | 67            | Birch (1980)                                                                |
| South Bay                    | 64 100000  | -84 083333  | 160           | Bird (1900)                                                                 |
| Southampton Island           | 64,700000  | -84,766667  | 133           | Bird (1970)                                                                 |
| Southampton Island           | 64.283333  | -82.950000  | 152           | Bird (1970)                                                                 |
| Southampton Island           | 65.100000  | -83,400000  | 190           | Bird (1970)                                                                 |
| Southampton Island East      | 63.750000  | -80.400000  | 157           | Bird (1970)                                                                 |
| Southampton Island Northeast | 64.500000  | -81.750000  | 180           | Bird (1970)                                                                 |
| The Points                   | 63.550000  | -85.000000  | 172           | Bird (1970)                                                                 |
| White Island                 | 65.850000  | -85.000000  | 158           | Bird (1970)                                                                 |
| Inglefield Land              | 78.633333  | -72.283333  | 87            | Blake <i>et al.</i> (1992)                                                  |
| Refuge Harbour               | 78.453333  | -72.616667  | 96            | Blake <i>et al.</i> (1992)                                                  |
| Clarence Head                | 76.793333  | -77.800000  | 80            | Blake in Lowdon and Blake (1981)                                            |
| Cape Rammelsberg             | 63.391667  | -68.416667  | 120           | Blake (1966), Mode and Jacobs in Andrews and Short (1983)                   |
| Bowman Bay                   | 65.400000  | -73.200000  | 107           | Blake (1966), Prest <i>et al</i> . (1968)                                   |
| Anstead Point                | 76.491667  | -81.616667  | 105           | Blake (1975)                                                                |
| Baad Fiord                   | 76.683333  | -86.316667  | 110           | Blake (1975)                                                                |
| Cape Storm                   | /6.391667  | -87.633333  | 130           | Blake (1975)                                                                |
| South Cape Flord             | 76.525000  | -85.200000  | 115           | Blake (1975)                                                                |
| Dalid Inlet                  | /8.533333  |             | 90            | Diake (1968)<br>Please (1962) Thempson at al (1990)                         |
| Clude Cliffs                 | 43.250000  | -10.005000  | וס יי<br>כר י | Diouin (1903), Thompson <i>et al.</i> (1989)<br>Briner <i>et al.</i> (2005) |
| Abrahams Cove                | 10.0000333 | -03.00000/  | 20<br>12      | Brookes (1960)                                                              |
| Robinsons Head               | 40.020000  | -58 7060//  | -+3           | Brookes (1974)                                                              |
| Rope Cove                    | 48 916667  | -58 485000  | 75            | Brookes (1974)                                                              |
| Wreckhouse                   | 47.700000  | -59.300000  | 9             | Brookes (1977)                                                              |
|                              |            |             | -             |                                                                             |

| Locality                | Latitude  | Longitude   | Marine Limit | Reference                                                                   |
|-------------------------|-----------|-------------|--------------|-----------------------------------------------------------------------------|
| Blackhead Bay           | 48.580000 | -53.270000  | 25           | Brookes (1989)                                                              |
| Clarenville             | 48.190000 | -53.970000  | 17           | Brookes (1989)                                                              |
| Plate Cove              | 48.510000 | -53.500000  | 27           | Brookes (1989)                                                              |
| Trinity                 | 48.370000 | -53.370000  | 17           | Brookes (1989)                                                              |
| Horse Cove              | 47.566667 | -52.900000  | 6            | Bruckner (1969), Rogerson and Tucker (1972), Catto (2000)                   |
| Foul Bay                | 62.150000 | -73.050000  | 155          | Bruneau and Gray (1997)                                                     |
| Morrisonville           | 44.683300 | -73.550000  | 130          | Chapman (1937)                                                              |
| Mullen Brook            | 44.116700 | -73.483300  | 74           | Chapman (1937)                                                              |
| St Albans               | 44.800000 | -73.080000  | 134          | Chapman (1937)                                                              |
| West Chazy              | 44.816700 | -73.600000  | 142          | Chapman (1937)                                                              |
| Brooks Peninsula        | 50.104167 | -127.750830 | 20           | Clague <i>et al.</i> (1982)                                                 |
|                         | 50.740000 | -128.330000 | 27           | Clague <i>et al.</i> (1982)                                                 |
| Hireob Divor            | 49.475000 | 120.441000  | 200          | Clague et al. $(1992)$                                                      |
|                         | 54.003333 | 120.595550  | 200          | Clague et al. (1992)                                                        |
| Tofino                  | 10 10000  | -125.510000 | 200          | Claque (1981)                                                               |
| Aulatsivik Island South | 56 666667 | -61 394444  | 71           | Clark and Fitzhugh (1992)                                                   |
| Makkovik Harbour head   | 55 083333 | -59 166667  | 107          | Clark and Fitzhugh (1992)                                                   |
| Okak                    | 57 500000 | -62 000000  | 79           | Clark and Fitzhugh (1992)                                                   |
| Saglek Fiord            | 58.500000 | -62.966667  | 55           | Clark (1988)                                                                |
| Shoal Cove              | 59.358333 | -63.791667  | 56           | Clark (1988)                                                                |
| Point Mackenzie         | 61.246944 | -150.028611 | 36           | Combellick and Reger (1994)                                                 |
| Armark River            | 66.750000 | -100.500000 | 168          | Craig (1961)                                                                |
| Chantrey Inlet          | 67.000000 | -94.800000  | 152          | Craig (1961)                                                                |
| Kaleet River            | 66.300000 | -98.200000  | 168          | Craig (1961)                                                                |
| MacAlpine Lake          | 66.816667 | -103.100000 | 198          | Craig (1961), Kerr (1996)                                                   |
| Fawn River              | 54.000000 | -88.600000  | 152          | Craig (1969), Dredge and Cowan (1989)                                       |
| Kapiskau                | 51.933333 | -84.533333  | 158          | Craig (1969), Skinner (1973), Dredge and Cowan (1989)                       |
| Adams Sound             | 72.900000 | -85.000000  | 74           | Craig (unpublished map)                                                     |
| Hopedale                | 55.916667 | -60.750000  | 119          | Daly (1902), Clark and Fitzhugh (1990)                                      |
| Big Lake                | 48.384167 | -122.233330 | 90           | Dethier <i>et al.</i> (1995)                                                |
| Mt Vernon North         | 48.442667 | -122.322167 | 90           | Dethier <i>et al.</i> (1995)                                                |
| Pear Point              | 48.523667 | -123.006833 | 100          | Dethier et al. (1995)                                                       |
| Port Angeles            | 48.128500 | 123.400000  | 50           | Dethier et al. (1995)<br>Dethier et al. (1995)                              |
| Whidboy Island          | 40.020000 | -122.133330 | 60<br>60     | Dethier at al. $(1995)$                                                     |
| Penn Cove               | 48 241667 | -122.00000  | 60           | Dethier et al. (1995)<br>Dethier et al. (1995) Kovanen and Slavmaker (2004) |
| Bic                     | 48 376389 | -68 706944  | 100          | Dionne and Coll (1995)                                                      |
| Point Hubert            | 48.075556 | -69.750000  | 130          | Dionne and Occhietti (1996)                                                 |
| Tadoussac North         | 48.180556 | -69.700556  | 136          | Dionne and Occhietti (1996)                                                 |
| Matane                  | 48.844444 | -67.559722  | 110          | Dionne (1977)                                                               |
| Rivière-du-Loup         | 47.820000 | -69.513333  | 155          | Dionne (1977)                                                               |
| Akugdlit                | 68.650000 | -51.250000  | 110          | Donner and Jungner (1975)                                                   |
| Kanala                  | 68.600000 | -52.566667  | 116          | Donner and Jungner (1975)                                                   |
| Missisa Lake            | 52.600000 | -85.300000  | 167          | Dredge and Cowan (1989)                                                     |
| Nagagami River          | 49.750000 | -84.400000  | 137          | Dredge and Cowan (1989)                                                     |
| Partridge River         | 50.600000 | -80.400000  | 182          | Dredge and Cowan (1989)                                                     |
| Severn River            | 55.200000 | -90.500000  | 152          | Dredge and Cowan (1989)                                                     |
| Sutton Ridge            | 54.500000 | -85.500000  | 180          | Dredge and Cowan (1989)                                                     |
| Bennett Bay             | 66.064410 | -90.470300  | 50           | Dredge and McMartin (2005)                                                  |
| Bennett Bay             | 65.986120 | -90.194850  | 95           | Dredge and McMartin (2005)                                                  |
| Brown Lake West         | 65.940600 | -91.486670  | 96           | Dredge and McMartin (2005)                                                  |
| Sila Louge              | 50,000000 | -97.018900  | 95           | Dredge and Micharlin (2005)                                                 |
|                         | 59.000000 | -96.000000  | 145          | Dredge and Nixon (1992)                                                     |
| Gods River              | 56 00000  | -94.700000  | 140          | Dredge and Nixon (1992)                                                     |
| Kaskattama Unlands      | 56 100000 | -92.20000   | 146          | Dredge and Nixon (1992)                                                     |
| Owl River               | 57 600000 | -93 533333  | 140          | Dredge and Nixon (1992)                                                     |
| Stupart River           | 55,983333 | -93,383333  | 137          | Dredge and Nixon (1992)                                                     |
| South Knife River       | 58.500000 | -96.000000  | 160          | Dredge and Nixon (1992). Dredge <i>et al.</i> (1986)                        |
| Kugaryuak River         | 67.660000 | -113.635000 | 170          | Dredge <i>et al.</i> (1998)                                                 |
| Tree River              | 67.504167 | -112.033330 | 210          | Dredge <i>et al.</i> (1998)                                                 |
| Baie Trinité            | 49.417000 | -67.300000  | 103          | Dredge (1983b)                                                              |
| Godbout                 | 49.500000 | -67.600000  | 100          | Dredge (1983b)                                                              |

| Locality                  | Latitude  | Longitude         | Marine Limit    | Reference                       |
|---------------------------|-----------|-------------------|-----------------|---------------------------------|
| Moisie River              | 50.300000 | -66.200000        | ) 128           | Dredge (1983b)                  |
| Port Cartier              | 50.033000 | -66.867000        | ) 123           | Dredge (1983b)                  |
| Rivière Pentecote         | 49.783000 | -67.167000        | ) 120           | Dredge (1983b)                  |
| Rivière Sainte-Marguerite | 50.133000 | -66.600000        | ) 125           | Dredge (1983b)                  |
| Ajaqutalik River          | 68.250000 | -83.000000        | ) 110           | Dredge (1995)                   |
| Amherst East              | 69.666667 | -82.750000        | ) 120           | Dredge (1995)                   |
| Amherst South             | 69.683333 | 3 -84.050000      | ) 140           | Dredge (1995)                   |
| Amitoke Peninsula         | 68.133333 | 3 -82.500000      | ) 130           | Dredge (1995)                   |
| Amitoke Peninsula         | 68.166667 | -82.416667        | 140             | Dredge (1995)                   |
| Baghall<br>Blacks Inlet   | 69 050000 |                   | 7 145<br>7 170  | Dredge (1995)<br>Dredge (1995)  |
| Cape Ellice               | 60 633333 | 2 -85 333333      | 200             | Dredge (1995)                   |
| Corcoran                  | 68 500000 | -85 750000        | 200             | Dredge (1995)<br>Dredge (1995)  |
| Corrigal                  | 69.416667 | -85.083333        | 3 140           | Dredge (1995)                   |
| Ellice South              | 69.583333 | -85.333333        | 3 220           | Dredge (1995)                   |
| Foster Lake South         | 68.000000 | 85.750000         | ) 150           | Dredge (1995)                   |
| Franklin North            | 69.516667 | -85.416667        | 220             | Dredge (1995)                   |
| Fury & Hecla Strait       | 69.800000 | -84.500000        | 160             | Dredge (1995)                   |
| Garry Bay Central         | 68.716667 | <b>-84.916667</b> | <b>'</b> 160    | Dredge (1995)                   |
| Garry Bay East            | 68.716667 | <b>-84.583333</b> | 3 130           | Dredge (1995)                   |
| Garry Bay West            | 68.716667 | -85.333333        | 3 200           | Dredge (1995)                   |
| Hall Lake                 | 68.583333 | -82.750000        | ) 140           | Dredge (1995)                   |
| Hall Lake North           | 68.716667 | -83.066667        | ' 120           | Dredge (1995)                   |
| Hopkins                   | 69.250000 | -85.416667        | ' 180           | Dredge (1995)                   |
| Kingora River             | 68.583333 | -83.000000        | ) 110           | Dredge (1995)                   |
| Lailor Lake               | 69.166667 | -82.583333        | B 95            | Dredge (1995)                   |
| Lailor Lake Southwest     | 69.100000 | ) -83.133333      | 3 110           | Dredge (1995)                   |
| Selkirk                   | 68.166667 | -85.750000        | ) 1/0           | Dredge (1995)                   |
| Siddaid                   | 68.300000 | -85.750000        | ) 235           | Dredge (1995)<br>Dredge (2002)  |
| Cape Iermain              | 67 766667 | 7 -83.000000      | 7 140           | Dredge (2002)                   |
| Cape Penrbyn              | 67 466667 | -81 250000        | 140             | Dredge (2002)                   |
| Gore Bay                  | 66 216667 | -83 916667        | 7 180           | Dredge (2002)                   |
| Haviland-2                | 66 450000 | -85 416667        | 7 182           | Dredge (2002)                   |
| Hoppner Inlet             | 66.916667 | -83.750000        | ) 140           | Dredge (2002)                   |
| Hurd North                | 66.650000 | -85.083333        | 3 150           | Dredge (2002)                   |
| Le froy East              | 67.300000 | -86.333333        | 3 120           | Dredge (2002)                   |
| Le froy West              | 67.300000 | -86.666667        | ' 140           | Dredge (2002)                   |
| Lyon North                | 66.816667 | -84.333333        | 3 130           | Dredge (2002)                   |
| Lyon North-2              | 67.000000 | -84.333333        | 3 120           | Dredge (2002)                   |
| Lyon West                 | 66.633333 | -84.166667        | ' 155           | Dredge (2002)                   |
| Matheson River            | 67.633333 | -86.330000        | ) 150           | Dredge (2002)                   |
| North Pole                | 66.866667 | -86.666667        | / 140           | Dredge (2002)                   |
| Quartzite Lake            | 67.083333 | 3 -81.533333      | 3 150           | Dredge (2002)                   |
|                           | 66.500000 | -86.083333        | 3 150<br>100    | Dredge (2002)                   |
| Nales Island East         | 67.083333 |                   | 100             | Dredge (2002)                   |
| Winter Island             | 66 350000 | -00.000000        | 150             | Dredge (2002)                   |
| Nadluardiuk River         | 68 366667 | -73 00000         |                 | Dredge (2002)<br>Dredge (2003a) |
| Tweedsmuir Island South   | 68 450000 | -74 266667        | 7 110           | Dredge (2003a)                  |
| Wordie Bay                | 68,183333 | -72,450000        | ) 74            | Dredge (2003a)                  |
| Nadluardiuk Eeat          | 68.633333 | -72.766666        | 62              | Dredge (2003b)                  |
| Nadluardjuk West          | 68.583333 | -73.183333        | 3 72            | Dredge (2003b)                  |
| Straits Bay West          | 68.583333 | -74.00000         | 92              | Dredge (2003b)                  |
| Longstaff Bluff           | 68.966667 | -75.216667        | <sup>7</sup> 93 | Dredge (2003c)                  |
| Piling Bay South          | 68.833333 | -74.733333        | 96              | Dredge (2003c)                  |
| Butterfly Lake            | 69.416667 | -75.850000        | ) 104           | Dredge (2003d)                  |
| Flint Lake Central        | 69.283333 | 3 -74.216667      | <b>′</b> 60     | Dredge (2003d)                  |
| Ikpik East                | 69.266667 | -75.633333        | 95              | Dredge (2003d)                  |
| Ipiutik Lake              | 69.083333 | 3 -75.466667      | 7 111           | Dredge (2003d)                  |
| Piling Lake East          | 69.283333 | -74.400000        | ) 77            | Dredge (2003d)                  |
| Rivière Mécatina          | 50.900000 | -59.750000        | 130             | Dubois <i>et al.</i> (1984)     |
| Riviere Natashquan        | 50.500000 | -61.830000        | 122             | Dubois et al. (1984)            |
| SI AUGUSTIN               | 51.330000 | -58.830000        | 150             | Dubois et al. (1984)            |

| Locality                  | Latitude I | Longitude   | Marine Limit | Reference                           |
|---------------------------|------------|-------------|--------------|-------------------------------------|
| Baie Comeau               | 49.216667  | -68.194444  | 136          | Dubois (1977)                       |
| Sheldrake River           | 50.333333  | -64.600000  | 130          | Dubois (1977)                       |
| Gabriel Island            | 62.900000  | -66.533333  | 97           | Duval in Manley and Jennings (1996) |
| Chase Island              | 63.033333  | -66.883333  | 114          | Duval (1993)                        |
| Cape Southwest            | 78.230278  | -91.505000  | 123          | Dyke and England (unpublished)      |
| Cape Southwest            | 78.274722  | -91.911666  | 130          | Dyke and England (unpublished)      |
| Good Friday Bay head      | 78.560555  | -91.878333  | 92           | Dyke and England (unpublished)      |
| Good Friday Bay Southwest | 78.485000  | -92.735000  | 114          | Dyke and England (unpublished)      |
| Good Friday Bay Southwest | 78.633333  | -92.933333  | 123          | Dyke and England (unpublished)      |
| Sand Bay                  | 78.800000  | -93.283333  | 123          | Dyke and England (unpublished)      |
| Scaare Fiord head         | 79.000000  | -87.900000  | 123          | Dyke and England (unpublished)      |
| Wolf Fiord                | 78.348889  | -88.743333  | 106          | Dyke and England (unpublished)      |
| Jungersen Bay             | /1.510000  | -84.325000  | 72           | Dyke and Hooper (2000)              |
| Sunday Bay                | /1.6/666/  | -85.150000  | 88           | Dyke and Hooper (2000)              |
| Likiraq River             | 71.850000  | -86.300000  | 95           | Dyke and Hooper (2000)              |
| Cape Back                 | 70.101007  | 117 000000  | 115          | Dyke and Savelle (2000)             |
| Cape Baring               | 60.012500  | 117 167500  | 120          | Dyke and Savelle (2000)             |
|                           | 60 672222  | 116 550920  | 120          | Dyke and Savelle (2000)             |
| Point Caon                | 60 3/1667  | -115 467220 | 03           | Dyke and Savelle (2000)             |
| Prince Albert Sound       | 70 266667  | -115 200000 | 132          | Dyke and Savelle (2002)             |
| Linaluk Island Southwest  | 70.200007  | -113 657600 | 128          | Dyke and Savelle (2003b)            |
| Kuuk Biver                | 70.652850  | -112 601083 | 107          | Dyke and Savelle (2003c)            |
| Page Point, 30 km West    | 70,713333  | -114.396660 | 98           | Dyke and Savelle (2004a)            |
| Holman Northwest          | 70.806667  | -117.930000 | 90           | Dyke and Savelle (2004b)            |
| Berkelev Point            | 71.907283  | -118.975983 | 54           | Dyke and Savelle (unpublished)      |
| Cape Ptarmigan            | 70.973833  | -118.361783 | 75           | Dyke and Savelle (unpubublished)    |
| Arabella Bay              | 73.650000  | -99.500000  | 133          | Dyke <i>et al.</i> (1991)           |
| Baring Channel            | 73.750000  | -98.283333  | 120          | Dyke <i>et al.</i> (1991)           |
| Browne Bay                | 73.175000  | -98.550000  | 95           | Dyke et al. (1991)                  |
| Cape Anne                 | 74.030000  | -94.800000  | 122          | Dyke <i>et al.</i> (1991)           |
| Cape Hardy                | 73.791667  | -97.700000  | 95           | Dyke <i>et al.</i> (1991)           |
| Crooked Lake              | 72.666667  | -98.283333  | 102          | Dyke <i>et al</i> . (1991)          |
| Cunningham Inlet          | 73.983333  | -93.666667  | 102          | Dyke <i>et al.</i> (1991)           |
| Drake Bay                 | 73.458333  | -100.900000 | 120          | Dyke <i>et al.</i> (1991)           |
| Fisher Lake               | 72.166667  | -97.833333  | 100          | Dyke <i>et al.</i> (1991)           |
| Guillimard Bay            | /1.59166/  | -97.350000  | 100          | Dyke <i>et al.</i> (1991)           |
| Hollist Point             | 72.766667  | -102.116660 | 136          | Dyke et al. (1991)                  |
| Prescoll Island           | 73.010007  | -97.050000  | 107          | Dyke $e_i a_i$ (1991)               |
| Resolute Day              | 74.712500  | -94.000007  | 76           | Dyke et al. $(1991)$                |
| Russell Island            | 73.920007  | -90.020000  | 95           | Dyke et al. (1991)                  |
| Smith Bay                 | 73.066667  | -99 466667  | 100          | Dyke et al. $(1001)$                |
| Stanwell-Eletcher Lake    | 72 775000  | -94 350000  | 157          | Dyke et al. (1991)                  |
| Transition Bay            | 72.091667  | -96.550000  | 115          | Dyke et al. (1991)                  |
| St Chads                  | 48.685000  | -53.778333  | 38           | Dyke (1973). Sommerville (1997)     |
| Fury Point                | 72.819444  | -92.016667  | 90           | Dyke (1979a)                        |
| Kangerk Fiord             | 66.420000  | -67.300000  | 88           | Dyke (1979b)                        |
| Kangilo Fiord head        | 66.575000  | -67.941667  | 47           | Dyke (1979b)                        |
| Kingnait Fiord head       | 66.350000  | -64.350000  | 27           | Dyke (1979b)                        |
| Kingnait Fiord mouth West | 65.980000  | -65.750000  | 99           | Dyke (1979b)                        |
| Millut Bay                | 66.550000  | -67.500000  | 58           | Dyke (1979b)                        |
| Pangnirtung               | 66.141667  | -65.725000  | 50           | Dyke (1979b)                        |
| Pangnirtung Fiord mouth   | 66.100000  | -66.067000  | 105          | Dyke (1979b)                        |
| Shark Fiord head          | 66.700000  | -67.150000  | 100          | Dyke (1979b)                        |
| Usualuk Valley            | 66.558333  | -66.266667  | 70           | Dyke (1979b)                        |
| Cape Garry                | 72.447222  | -93.700000  | 150          | Dyke (1983)                         |
| Abernethy River           | 71.216667  | -93.666667  | 215          | Dyke (1984)                         |
| Lord Lindsay River        | 70.010000  | -93.500000  | 156          | Dyke (1984)                         |
| Pasiey Bay                | 70.420833  | -90.01666/  | 136          | Dyke (1984)                         |
| Felly Day<br>Shanbard Bay | 00.90000/  | -89.983333  | 20U          | Dyke (1904)                         |
| Wrottesley Valley         | 71 250000  | -92.94100/  | 104          | Dyke (1984)                         |
| Griffith Island           | 74 595000  | -95 775000  | 106          | Dyke (1993)                         |
|                           |            |             |              | (                                   |

| Locality                    | Latitude  | Longitude   | Marine Limit   | Reference                    |
|-----------------------------|-----------|-------------|----------------|------------------------------|
| Lowther Island              | 74.550000 | -97.516667  | 7 106          | Dyke (1993)                  |
| Arthur Fiord                | 76.455000 | -93.696944  | 4 80           | Dyke (1998)                  |
| Barrow Harbour              | 76.583333 | -95.525000  | ) 116          | Dyke (1998)                  |
| Bere Bay                    | 76.857778 | -94.232222  | 2 99           | Dyke (1998)                  |
| Cape Home                   | 75.773333 | -83.854/22  | 2 114          | Dyke (1998)<br>Dyke (1998)   |
| Devon Island Southeast      | 74.594107 | -80 150000  | ) 0            | Dyke (1998)                  |
| Devon Islane East-central   | 75.350000 | -79.400000  | ) 6            | Dyke (1998)                  |
| Dragleyback Inlet           | 75.610000 | -91.786111  | 83             | Dyke (1998)                  |
| Drover Lake                 | 74.903056 | -90.578889  | 9 65           | Dyke (1998)                  |
| Firkin Point                | 75.556944 | -85.354444  | 43             | Dyke (1998)                  |
| Gascoyne Inlet              | 74.655000 | -91.298333  | 3 115          | Dyke (1998)                  |
| Griffin Inlet               | 75.188056 | -92.013889  | 9 91           | Dyke (1998)                  |
| Inglis Sound                | 70.375833 | -94.922778  | 91<br>107      | Dyke (1998)                  |
| Lovell Fornt<br>Lyall River | 76 960278 | -95 254444  | 117            | Dyke (1998)                  |
| Lvall River                 | 77.012500 | -95.383333  | 3 131          | Dyke (1998)                  |
| Macormick Bay               | 75.390000 | -92.236389  | 9 102          | Dyke (1998)                  |
| Nookap Fiord                | 75.431389 | -87.601667  | 7 69           | Dyke (1998)                  |
| Owen Point                  | 76.072500 | -92.365556  | 84             | Dyke (1998)                  |
| Porden Point                | 76.333056 | -93.896944  | 4 95           | Dyke (1998)                  |
| Powell Inlet                | 74.690278 | -85.583333  | 3 42           | Dyke (1998)                  |
| Providence Mountain         | /5.61///8 | -91.558056  | 5 78           | Dyke (1998)                  |
| Sandhook Bay                | 74.043009 | -00.42111   |                | Dyke (1996)<br>Dyke (1998)   |
| Sophia Cove                 | 75 133056 | -91 772500  | ) 67           | Dyke (1998)                  |
| Stratton Inlet              | 74.623333 | -86.796667  | 7 55           | Dvke (1998)                  |
| Thomas Lee Inlet, main arm  | 75.342778 | -88.633889  | 9 79           | Dyke (1998)                  |
| Thomas Lee Inlet, West Arm  | 75.541667 | -89.991667  | 7 76           | Dyke (1998)                  |
| Triton Bay                  | 76.541389 | -92.409167  | 7 110          | Dyke (1998)                  |
| Viks Fiord                  | 75.755556 | -91.206667  | 7 77           | Dyke (1998)                  |
| Washington Point            | 75.775000 | -94.350000  | ) 110          | Dyke (1998)                  |
| Wilmer Bay                  | 76.959722 | -94.874444  | + 114<br>) 101 | Dyke (1998)<br>Dyke (1998)   |
| Phillips Creek              | 71 866667 | -80 85000   | ) 48           | Dyke (2000a)                 |
| Beta River                  | 72.275000 | -81.283333  | 3 79           | Dvke (2000b)                 |
| Koluktoo Bay                | 72.083333 | -81.333333  | 3 61           | Dyke (2000b)                 |
| Lavoie Point                | 72.900000 | -80.541667  | 7 61           | Dyke (2000b)                 |
| Eqalulik River              | 72.650000 | -85.658333  | 3 41           | Dyke (2000c)                 |
| Fitzgerald Bay              | 72.050000 | -89.866667  | 7 96           | Dyke (2000c)                 |
| Fitzgerald Bay              | 72.016667 | -89.883333  | 3 102          | Dyke (2000c)                 |
| McBean Bay                  | 72.408333 | -80.300000  | 7 99           | Dyke (2000c)                 |
| Tiriganjalaag Biver         | 72,208333 | -86.483333  | 3 98           | Dyke (2000c)                 |
| Vista River                 | 72.750000 | -87.000000  | 80             | Dyke (2000c)                 |
| Baillarge Bay               | 73.216667 | -84.216667  | 7 40           | Dyke (2000d)                 |
| Cape Crawford               | 73.633333 | -85.125000  | ) 55           | Dyke (2000d)                 |
| Cape York                   | 73.716667 | -87.016667  | 62             | Dyke (2000d)                 |
| Stanley Point               | 73.816667 | -85.450000  | ) 60           | Dyke (2000d)                 |
| Victor Bay                  | 73.050000 | -85.083333  | 3 60<br>7 50   | Dyke (2000d)                 |
| Sikosak Bay                 | 70.016000 | -83 166667  | 7 98           | Dyke (2000e)<br>Dyke (2003a) |
| Gifford River               | 70.683000 | -83.650000  | ) 75           | Dyke (2004b)                 |
| Cape Thalbitzer             | 69.978333 | -79.148055  | 5 94           | Dyke (2006)                  |
| Cockburn Lake               | 70.450000 | -78.666667  | 7 54           | Dyke (2006)                  |
| Rowley River                | 70.276111 | -77.911944  | 4 65           | Dyke (2006)                  |
| Creswell Bay                | 72.808333 | -93.683333  | 3 145          | Dyke (unpublished)           |
| Nudlukta Inlet              | 71.458333 | -94.483333  | 3 192          | Dyke (unpublished)           |
| Iuttuturaq Lake East        | 69.400000 | -113.366666 | 5 130          | Dyke (unpublished)           |
| Iulluturaq Lake West        | 67 516667 | -113.91666/ | 7 130          | Dyke (unpublished)           |
| Alexandra Fiord             | 78 866667 | -04.041007  | ) 61           | England <i>et al.</i> (2000) |
| Bartlett Bay                | 79.183333 | -75.000000  | ) 88           | England <i>et al.</i> (2000) |
| Beitstad Fiord              | 79.071667 | -78.800000  | ) 34           | England et al. (2000)        |

| Locality                   | Latitude  | Longitude   | Marine Limit | Reference                              |
|----------------------------|-----------|-------------|--------------|----------------------------------------|
| Flagler Bay                | 79.100000 | -75.950000  | 83           | England <i>et al.</i> (2000)           |
| Herschel Bay               | 78.600000 | -74.750000  | 117          | England <i>et al.</i> (2000)           |
| Jokel Fiord, Sands Glacier | 78.950000 | -77.916667  | 50           | England <i>et al.</i> (2000)           |
| Knud Peninsula             | 79.096667 | -76.075000  | 80           | England <i>et al.</i> (2000)           |
| Princess Marie Bay         | 79.466667 | -75.583333  | 88           | England <i>et al.</i> (2000)           |
| Ammonite Mountain          | 77.833333 | -87.666666  | 131          | England <i>et al.</i> (2004)           |
| Hook Glacier, opposite     | 77.510000 | -81.721667  | 105          | England <i>et al.</i> (2004)           |
| Piliravijuk Bay            | 77.333333 | -82.083333  | 102          | England <i>et al.</i> (2004)           |
| Schel Point                | 77.817778 | -86.826111  | 135          | England <i>et al.</i> (2004)           |
| Stopkul Eiord              | 77.283000 | -84.417000  | 72           | England et al. (2004)                  |
| Alort                      | 92 450000 | 62 750000   | 100          | England (1092)                         |
|                            | 81 200000 | -69 066667  | 95           | England (1983)                         |
| Cape Baird                 | 81,550000 | -64 500000  | 120          | England (1983)                         |
| Dalv River                 | 81.233333 | -65.866667  | 127          | England (1983)                         |
| Fort Conger                | 81.750000 | -64.783333  | 114          | England (1983)                         |
| Ida Bay                    | 81.516667 | -69.116667  | 104          | England (1983)                         |
| James Ross Bay             | 82.730000 | -64.800000  | 78           | England (1983)                         |
| Packdog Creek              | 81.383333 | -66.883333  | 115          | England (1983)                         |
| Sun Cape                   | 81.666667 | -65.333333  | 114          | England (1983)                         |
| Atka Elv lower             | 81.583333 | -60.916667  | 124          | England (1985)                         |
| Hall Land central          | 81.650000 | -59.966667  | 140          | England (1985)                         |
| Newman Bay East            | 81.816667 | -58.666667  | 139          | England (1985)                         |
| Antoinette Bay             | 80.900000 | -77.200000  | 122          | England (1990)                         |
| Canon Flord Inner East     | 79.750000 | -81.500000  | 130          | England (1990)                         |
| Canon Flord Outer East     | 80.200000 | -82.650000  | 148          | England (1990)                         |
| d'Iberville Fiord head     | 79.900000 | -82.300007  | 141          | England (1990)<br>England (1990)       |
| Greely Fiord               | 80 716667 | -80 583333  | 124          | England (1990)                         |
| Greely Fiord               | 80 450000 | -80 616667  | 140          | England (1990)                         |
| Greely Fiord               | 80.400000 | -81.500000  | 146          | England (1990)                         |
| Tanguary Fiord             | 80.933333 | -79.250000  | 116          | England (1990)                         |
| Cape Wilkes                | 80.216667 | -70.133333  | 81           | England (1996)                         |
| Carl Ritter B, 10 km South | 80.783333 | -67.916667  | 122          | England (1996)                         |
| Carl Ritter B, 26 km South | 80.700000 | -68.483333  | 99           | England (1996)                         |
| Carl Ritter Bay            | 80.916667 | -67.900000  | 114          | England (1996)                         |
| Dobbin Bay East            | 79.816667 | -72.633333  | 83           | England (1996)                         |
| Dobbin Bay Northeast       | 79.833333 | -73.466667  | 81           | England (1996)                         |
| Franklin Pierce Bay        | 79.533333 | -75.000000  | 92           | England (1996)                         |
| John Richardson Bay        | 80.166667 | -/1.46666/  | 84           | England (1996)                         |
| Radmore Harbour            | 80 433333 | -00.033333  | 81           | England (1996)                         |
| Scoresby Bay bead          | 79 900000 | -70.150000  | 84           | England (1996)                         |
| Albion Lake                | 82 050000 | -87 750000  | 80           | Evans (1990)                           |
| Bushmill Pass              | 81.966667 | -87.250000  | 85           | Evans (1990)                           |
| Cache Head Fiord           | 81.950000 | -85.916667  | 86           | Evans (1990)                           |
| Cape Alfred Ernest         | 82.333333 | -85.416667  | 65           | Evans (1990)                           |
| Wind Gap                   | 81.966667 | -84.666667  | 91           | Evans (1990)                           |
| Tay Sound elbow            | 72.000000 | -79.250000  | 88           | Falconer in Andrews and Drapier (1967) |
| Tay Sound head             | 71.933333 | -78.583333  | 78           | Falconer in Andrews and Drapier (1967) |
| Squamish                   | 49.695000 | -123.140000 | 45           | Friele and Clague (2002)               |
| Muskrat Falls              | 53.258333 | -60.745833  | 135          | Fulton and Hodgson (1979)              |
| Sandy Point                | 53.837500 | -57.133333  | 80           | Fulton and Hodgson (1979)              |
| Arundei                    | 46.000000 | -74.550000  | 250          | Fulton (1987)                          |
| Campbolle Roy              | 45.391007 | -75.341007  | 210          | Fullon (1987)                          |
| Clayton                    | 45.750000 | -76.000000  | 1/0          | Fulton (1987)                          |
| Duhamel                    | 46 020000 | -75 080000  | 210          | Fulton (1987)                          |
| Innisville                 | 45.050000 | -76.250000  | 155          | Fulton (1987)                          |
| Lascelles                  | 45.729167 | -75.954167  | 211          | Fulton (1987)                          |
| Mallorytown                | 44.480000 | -75.880000  | 123          | Fulton (1987)                          |
| Onslow Corners             | 45.650000 | -76.300000  | 192          | Fulton (1987)                          |
| Pembroke                   | 45.830000 | -77.200000  | 174          | Fulton (1987)                          |
| Shawville                  | 45.609722 | -76.500000  | 182          | Fulton (1987)                          |

| Locality                   | Latitude  | Longitude   | Marine Limit  | Reference                                            |
|----------------------------|-----------|-------------|---------------|------------------------------------------------------|
| Smiths Falls               | 44.900000 | -76.020000  | ) 134         | Fulton (1987)                                        |
| Val des Bois               | 45.920000 | -75.600000  | 200           | Fulton (1987)                                        |
| White Lake                 | 45.370000 | -76.500000  | 170           | Fulton (1987)                                        |
| Sukkertoppen Island        | 65.600000 | -52.916667  | ′ 120         | Funder (1989)                                        |
| Bjorneoer                  | 71.166667 | -25.333333  | 105           | Funder (1990)                                        |
| Danmark Island             | 70.500000 | -26.183333  | 115           | Funder (1990)                                        |
| Konglomeratelv             | 71.350000 | -24.833333  | 8 110         | Funder (1990)                                        |
| Lollandselv                | 70.950000 | -24.116667  | ' 80          | Funder (1990)                                        |
| Nathorst Fiord             | 71.600000 | -22.616667  | 50            | Funder (1990)                                        |
| Ryders Elv                 | 70.866667 | -22.483333  | 8 44          | Funder (1990)                                        |
| Cape Stang                 | 71.400000 | -105.000000 | ) 113         | Fyles (1963)                                         |
| Lauchlan River             | 69.233333 | -109.883330 | 183           | Fyles (1963)                                         |
| Minto Inlet head           | 71.250000 | -115.500000 | 113           | Fyles (1963)                                         |
| Prince Albert Sound        | 70.080000 | -112.250000 | 140           | Fyles (1963)                                         |
| Tahoe Lake West            | 70.100000 | -109.833330 | 160           | Fyles (1963)                                         |
| Washburn Lake              | 70.100000 | -108.500000 | 159           | Fyles (1963)                                         |
| Pocologan<br>Shaldan Baint | 45.115000 | -00.595000  | 0 53<br>N 55  | Gadd (1973a)                                         |
| Departiculd                | 45.225000 | -00.110000  | 7 55<br>7 7 4 | Gadu (1973a)<br>Codd (1073a) Romoton (1094)          |
|                            | 67 750000 | -88 300000  | ) 74<br>) 255 |                                                      |
| Covey Hill                 | 45 020000 | -73 460000  | 160           | Goldthwait in Gadd (1973b) Pair and Bodriques (1993) |
| Les Éboulement             | 47.466667 | -70 333333  | 170           | Govern and Gangloff (1989)                           |
| Glenburnie                 | 49 446667 | -57 897500  | 42            | Grant (1987)                                         |
| Green Garden               | 49 507778 | -58 101667  | 72            | Grant (1987)                                         |
| Lomond                     | 49.453889 | -57,751667  | · 43          | Grant (1987)                                         |
| Norris Point               | 49.531944 | -57,861389  | 90            | Grant (1987)                                         |
| Trout River Pond           | 49.444167 | -58.118333  | 40            | Grant (1987)                                         |
| Belloni Point              | 47.666667 | -65.566667  | 50            | Grant (1989)                                         |
| Exploits River             | 49.063333 | -55.555833  | 50            | Grant (1989)                                         |
| Bell Island                | 50.750000 | -55.600000  | 136           | Grant (1992)                                         |
| Brador Bay                 | 51.500000 | -57.247222  | 152           | Grant (1992)                                         |
| Croque                     | 51.056667 | -55.846667  | 137           | Grant (1992)                                         |
| Forteau                    | 51.488333 | -56.976667  | 137           | Grant (1992)                                         |
| L'Anse au Loup             | 51.533330 | -56.783333  | 145           | Grant (1992)                                         |
| Locks Cove                 | 51.366667 | -55.966667  | ' 130         | Grant (1992)                                         |
| Pinware Bay                | 51.658333 | -56.683333  | 135           | Grant (1992)                                         |
| Quirpon Island             | 51.608333 | -55.416667  | 133           | Grant (1992)                                         |
| Red Bay                    | 51.741667 | -56.483333  | 130           | Grant (1992)                                         |
| St Anthony                 | 51.3/1389 | -55.622500  | 137           | Grant (1992)                                         |
| Bartletts Harbour          | 50.900000 | -56.750000  | 140           | Grant (1994)                                         |
|                            | 50.030000 | -55.900000  | 70            | Grant (1994)                                         |
| Dackson's Ann              | 49.801007 | -30.813833  | 9 41<br>106   | Grant (1994)<br>Grant (1994)                         |
| Part au Chaix              | 50.080000 | -57.000000  | 100           | Grant (1994)                                         |
| Western Blue Pond          | 50 375000 | -57 250000  | 115           | Grant (1994)                                         |
| Akpatok Island             | 60 570000 | -68 00000   | 81            | Grav et al. (1993)                                   |
| Akpatok Island             | 60,500000 | -67 850000  | 90            | Grav et al. (1993)                                   |
| Akulivik                   | 60.750000 | -78.416667  | 150           | Grav <i>et al.</i> (1993)                            |
| Baie-aux-Feuilles Sud      | 58.600000 | -70.000000  | 183           | Grav <i>et al.</i> (1993)                            |
| Cap Briard                 | 62.308333 | -74.011667  | ′ 142         | Gray <i>et al.</i> (1993)                            |
| Cap de la Nouvelle-France  | 62.416667 | -73.800000  | 182           | Gray <i>et al.</i> (1993)                            |
| Charles Island             | 62.666667 | -74.100000  | 160           | Gray et al. (1993)                                   |
| Deception River            | 62.120000 | -74.275000  | 142           | Gray et al. (1993)                                   |
| Douglas Harbour            | 62.000000 | -73.000000  | 150           | Gray <i>et al</i> . (1993)                           |
| Kangirsuk                  | 59.833333 | -70.083333  | 3 137         | Gray <i>et al</i> . (1993)                           |
| Kuujjuaq                   | 57.658330 | -69.496667  | ' 185         | Gray <i>et al</i> . (1993)                           |
| Povungnituk                | 60.050000 | -76.766667  | ' 140         | Gray <i>et al.</i> (1993)                            |
| Quaqtaq                    | 61.033333 | -69.925000  | 138           | Gray <i>et al.</i> (1993)                            |
| Sugluk Inlet               | 62.200000 | -75.633333  | 150           | Gray <i>et al.</i> (1993)                            |
| Ikudliayuk Lake            | 60.075556 | -64.700000  | 34            | Gray <i>et al.</i> (2000)                            |
| Edgell Island              | 61.775000 | -65.000000  | 21            | Gray in Manley and Jennings (1966)                   |
| Gould Bay                  | /9.750000 | -/1.366667  | 88            | Gualtieri and England (1998)                         |
| Jyllandselv                | /0./33333 | -24.100000  | 75            | Guiliksen <i>et al.</i> (1991)                       |
| Zeballos                   | 49.983333 | -126.850000 | 20            | Guiseii <i>et al.</i> (2004)                         |

| Locality             | Latitude L  | ongitude   | Marine Limit | Reference                                                           |
|----------------------|-------------|------------|--------------|---------------------------------------------------------------------|
| Barrow Dome          | 76.685777 - | 109.127416 | 59           | Hanson (2003)                                                       |
| Eldridge Bay         | 76.042222 - | 109.063638 | 65           | Hanson (2003)                                                       |
| Sabine Bay East      | 75.609916 - | 108.511972 | 61           | Hanson (2003)                                                       |
| Sherard Bay          | 76.051305 - | 108.852555 | 64           | Hanson (2003)                                                       |
| Weatherall Bay       | 75.750500 - | 107.764250 | 65           | Hanson (2003)                                                       |
| Inugsuin Fiord mouth | 69.933333   | -68.666667 | 25           | Harrison in Andrews and Drapier (1967)                              |
| Duart Bay            | 71.350000   | -72.883333 | 60           | Harrison in Andrews and Drapier (1967), Hodgson and Haselton (1974) |
| Macdonald River      | 81.400000   | -76.916667 | 86           | Hattersley-Smith and Long (1967)                                    |
| Bull Arm             | 47.817000   | -53.867000 | 10           | Henderson (1972)                                                    |
| Come By Chance       | 47.850000   | -53.983000 | 10           | Henderson (1972)                                                    |
| Long Harbour         | 47.420000   | -53.830000 | 6            | Henderson (1972)                                                    |
| Anse-Pleureuse       | 49.244167   | -65.638889 | 55           | Hétu and Gray (2000)                                                |
| Marsoui              | 49.191111   | -66.080556 | 60           | Hétu and Gray (2000)                                                |
| Petite-Valée         | 49.215278   | -65.037500 | 50           | Hétu and Gray (2000)                                                |
| Rivière-à-Claude     | 49.223889   | -65.875000 | 55           | Hétu and Gray (2000)                                                |
| Neigette             | 48.397222   | -68.434167 | 140          | Hétu (1998)                                                         |
| Saint-Anaclet        | 48.483333   | -68.377778 | 145          | Hétu (1998)                                                         |
| Richmond Gulf        | 56.266667   | -76.500000 | 270          | Hillaire-Marcel (1980)                                              |
| Antarctic Dal        | 72.000000   | -23.333333 | 70           | Hjort (1979)                                                        |
| Brogrtdal            | 73.716667   | -24.616667 | 65           | Hjort (1979)                                                        |
| Eskimonaes           | 74.100000   | -21.266667 | 50           | Hjort (1979)                                                        |
| Fleming Fjord        | 71.883333   | -22.916667 | 60           | Hjort (1979)                                                        |
| Foster Bugt          | 73.450000   | -21.783333 | 75           | Hjort (1979)                                                        |
| Holms Bugt           | 72.516667   | -23.966667 | 110          | Hjort (1979)                                                        |
| Kap Laura            | 72.883333   | -23.416667 | 90           | Hjort (1979)                                                        |
| Kap Mackenzie        | 72.900000   | -21.966667 | 70           | Hjort (1979)                                                        |
| Kap Petersens        | 72.416667   | -24.583333 | 100          | Hjort (1979)                                                        |
| Kildedalen           | 75.250000   | -20.916667 | 50           | Hjort (1979)                                                        |
| Permdal              | 74.400000   | -20.250000 | 50           | Hjort (1979)                                                        |
| Peters Bugt So       | 75.300000   | -20.083333 | 65           | Hjort (1979)                                                        |
| Segldal              | 72.116667   | -23.566667 | 100          | Hjort (1979)                                                        |
| Stordalen            | 73.666667   | -22.000000 | 70           | Hjort (1979)                                                        |
| Antarctic Bugt       | 80.833333   | -15.000000 | 80           | Hjort (1979)                                                        |
| Michael River        | 54.675000   | -57.808333 | 84           | Hodgson and Fulton (1972)                                           |
| Northwest River      | 53.525000   | -60.150000 | 135          | Hodgson and Fulton (1972)                                           |
| Cambridge Flord      | 71.250000   | -74.966667 | 61           | Hodgson and Haselton (1974)                                         |
| Kentra Bay           | 71.283333   | -74.250000 | 90           | Hodgson and Haselton (1974)                                         |
| Maud Harbour         | 71.750000   | -73.750000 | 29           | Hodgson and Haselton (1974)                                         |
| Iromso Fiord         | 71.083000   | -73.830000 | 70           | Hodgson and Haselton (1974)                                         |
| Cape Hatt            | 72.450000   | -79.816667 | 80           | Hodgson and Haselton (1974), Klassen (1993)                         |
| Natkusiak Peninsula  | 72.866667 - | 110.333330 | 135          | Hodgson and Vincent (1984)                                          |
| Workshop Point       | 72.828333 - | 111.933330 | 50           | Hodgson and Vincent (1984)                                          |
| Cape Clarendon       | 74.545000 - | 111.700000 | 90           | Hodgson <i>et al.</i> (1984)                                        |
| Cape Phipps          | 74.617000 - | 111.167000 | 34           | Hodgson <i>et al.</i> (1984)                                        |
| Shellabear Point     | 74.816667 - | 113.700000 | 60           | Hodgson <i>et al.</i> (1984)                                        |
| Winter Harbour       | 74.791667 - | 110.534160 | 30           | Hodgson <i>et al.</i> (1984)                                        |
| Brock Island East    | 77.900000 - | 113.916660 | 16           | Hodgson <i>et al.</i> (1984)                                        |
| Liuden Gulf          | /5.250000 - | 111.250000 | 61           |                                                                     |
|                      | 75.800000 - | 111.916667 | 53           | Hodgson <i>et al.</i> (1984)                                        |
| Stony Pass           | 74.916667 - | 111.500000 | 55           | Hodgson <i>et al.</i> (1984)                                        |
| Vendem Fierd         | 70.350000 - | 110./00000 | 30           | Hodgson (1072)                                                      |
| Vendom Flord         | 78.110007   | -82.10000/ | 70           | Hodgson (1973)                                                      |
| Creat Boar Cove      | 11.100009 - | 97 500000  | 80           | Hodgson (1977), Aikinson and England (2004)<br>Hodgson (1995)       |
| Riskolov Hovor       | 75 050000   | 116 250000 |              | Hodgson (1903)                                                      |
| Comfort Covo         | 75.950000 - | 117 500000 | 51           | Hodgson (1992)                                                      |
| Ibbett Bay           | 75.305000 - | 116 250000 | 60           | Hodgson (1992)                                                      |
| IDDell Day           | 75.800000 - | 110.20000  |              | Hodgson (1992)                                                      |
| LUNY FOIL            | 70.050000 - | 112.41000/ | 58<br>55     | Поцузон (1992)<br>Надагар (1992)                                    |
| Glenola Bay          | 73.300000 - | 100 000000 | 05           | Hodgson (1992)                                                      |
| Glenela Bay          | 72 250000 - | 110 250000 | 120          | Hodgson (1993)                                                      |
| Hadley Ray Northeast | 72.00000 -  | 108 116660 | 70           | Hodgson (1993)                                                      |
| Hadley Bay Most      | 72 025000 - | 100.110000 |              | Hodgeon (1993)                                                      |
| Kilian Lake          | 72 182222 - | 111 900000 | 120          | Hodason (1993)                                                      |
|                      | 12.100000 - |            | 120          |                                                                     |

| Locality                        | Latitude   | Longitude   | Marine Limit   | Reference                                            |
|---------------------------------|------------|-------------|----------------|------------------------------------------------------|
| Hadley Bay Northeast            | 72.550000  | -107.750000 | 90             | Hodgson (1994)                                       |
| Hadley Bay Southeast            | 72.116667  | -107.250000 | 124            | Hodgson (1994)                                       |
| Stefansson Island Northeast     | 73.583333  | -104.666660 | 80             | Hodgson (1994)                                       |
| Storkerson Peninsula Northeast  | 72.966667  | -106.133333 | 8 80           | Hodgson (1994)                                       |
| Storkerson Peninsula Northeast  | 73.197250  | -105.339110 | 80             | Hodgson (1994)                                       |
| Barnard Point                   | 72.933333  | -113.233333 | 54             | Hodgson (unpublished)                                |
| Loch Point                      | 73.100000  | -114.165555 | 5 50           | Hodgson (unpublished)                                |
| Markham Bay                     | 63,936800  | -71 846100  | 72             | Hodason (unpublished)                                |
| Prince of Wales Strait. Banks I | 73.190316  | -116.785466 | 46             | Hodgson (unpublished)                                |
| Prince of Wales Strait, Banks I | 73.275933  | -116.333333 | 49             | Hodgson (unpublished)                                |
| Richard Collinson Inlet head    | 72.516666  | -113.750000 | 90             | Hodgson (unpublished)                                |
| Richard Collinson Inlet head    | 72.616666  | -114.916666 | 90             | Hodgson (unpublished)                                |
| Storkerson Peninsula Southwest  | 72.116667  | -105.433333 | 8 85           | Hodgson (unpublished)                                |
| Autridge Bay                    | 70.133333  | -85.266667  | ′ 119          | Hooper (1996), Hooper and Dyke (2000)                |
| Bell Bay                        | 70.750000  | -85.300000  | 92             | Hooper (1996), Hooper and Dyke (2000)                |
| Berlinguet Inlet                | 70.916667  | -86.450000  | 139            | Hooper (1996), Hooper and Dyke (2000)                |
| Bernier Bay Fast                | 70 883333  | -88 10000   | 111            | Hooper (1996), Hooper and Dyke (2000)                |
| Bernier Bay North-central       | 70.8855555 | -88 466667  | / 125<br>/ 106 | Hooper (1996), Hooper and Dyke (2000)                |
| Bernier Bay Northeast           | 71.133333  | -87.083333  | 111            | Hooper (1996), Hooper and Dyke (2000)                |
| Cape Appel                      | 70.116667  | -86.116667  | ′ 119          | Hooper (1996), Hooper and Dyke (2000)                |
| Easter Cape                     | 70.883333  | -88.900000  | 116            | Hooper (1996), Hooper and Dyke (2000)                |
| Foss Fiord                      | 70.483333  | -87.183333  | 138            | Hooper (1996), Hooper and Dyke (2000)                |
| Morin Point                     | 71.433333  | -89.116667  | ' 118          | Hooper (1996), Hooper and Dyke (2000)                |
| Whyte Inlet                     | 70.183333  | -84.683333  | 3 114          | Hooper (1996), Hooper and Dyke (2000)                |
| Port McNeill                    | 50.566667  | -127.017500 | 92             | Howes (1981)                                         |
| Bloesedalen                     | 69.283333  | -53.466667  | 95             | Ingolfsson <i>et al.</i> (1990)                      |
| Enoks Havn                      | 69.733333  | -54.833333  | 55             | Ingolfsson <i>et al.</i> (1990)                      |
| Walker Arm                      | 70.363333  | -71 716667  | 7 58           | lyes in Andrews and Dranier (1967)                   |
| Windless Lake                   | 70.150000  | -77.583333  | 91             | Ives (1964), Andrews (1966), Dyke (2006)             |
| Netteling Lake Northwest        | 67.100000  | -71.667000  | 91             | Jackson (personal communication, 2005)               |
| Lewis Bay                       | 63.633333  | -68.100000  | ) 119          | Jacobs <i>et al.</i> (1985)                          |
| North Bay River                 | 47.750000  | -56.400000  | 21             | Jenness (1960)                                       |
| Terrenceville                   | 47.600000  | -54.700000  | ) 18           | Jenness (1960), Tucker <i>et al.</i> (1982)          |
| Sandbanks (Webb Bay)            | 56.817000  | -61.750000  | 41             | Johnson (1969)                                       |
| Kinzarof Lagoon                 | 55.283000  | -162.617000 | 25             | Jordan (2001)                                        |
| Abranam Bay                     | 65.183000  | -64.117000  | 0 39           | Kaplan and Miller (2003)                             |
| Brevoort Island                 | 63 333000  | -64 167000  | 32             | Kaplan and Miller (2003)                             |
| Brevoort Island                 | 63.633000  | -64.450000  | 27             | Kaplan and Miller (2003)                             |
| Butler Bay                      | 63.200000  | -64.933000  | 47             | Kaplan and Miller (2003)                             |
| Cape Arnoux                     | 63.217000  | -64.600000  | 42             | Kaplan and Miller (2003)                             |
| Cape Edwards                    | 64.867000  | -65.833000  | 64             | Kaplan and Miller (2003)                             |
| Cape Mercy                      | 64.967000  | -63.867000  | 24             | Kaplan and Miller (2003)                             |
| Cape Mercy North                | 65.033000  | -63.583000  | 23             | Kaplan and Miller (2003)                             |
| Chidliak                        | 64.783333  | -66.700000  | ) 54           | Kaplan and Miller (2003)                             |
| Cornelius Grinnell Bay          | 63.750000  | -65.167000  | 0 61           | Kaplan and Miller (2003)                             |
| Indix Day                       | 63 725000  | -67.417000  | 20             | Kaplan and Miller (2003)                             |
| Igaluijuag Fiord                | 65 667000  | -65 250000  | ) 74           | Kaplan and Miller (2003)                             |
| Igalujjudg Flord Southeast      | 65.550000  | -66.167000  | 65             | Kaplan and Miller (2003)                             |
| Kekerton Island                 | 65.700000  | -65.833000  | 102            | Kaplan and Miller (2003)                             |
| Kingnait Fiord mouth            | 65.783000  | -65.383000  | 93             | Kaplan and Miller (2003)                             |
| Kingnait Fiord Southeast        | 65.600000  | -65.250000  | 72             | Kaplan and Miller (2003)                             |
| Krumlien Fiord                  | 65.417000  | -64.830000  | ) 34           | Kaplan and Miller (2003)                             |
| Krumlien Fiord East             | 65.283000  | -64.830000  | 37             | Kaplan and Miller (2003)                             |
| Nettilling Fiord                | 65.660000  | -68.083000  | 46             | Kaplan and Miller (2003)                             |
| Nijadluk Harbour                | 65.133000  | -64.083000  | y 44           | Kaplan and Miller (2003)<br>Kaplan and Miller (2002) |
| Popham Ray                      | 00.11/000  | -04.30/000  | v 30<br>) 22   | rapian and Miller (2003)<br>Kaplan and Miller (2003) |
| Resolution Island               | 61.300000  | -64.850000  | ) 0            | Kaplan and Miller (2003)                             |
| Shomeo Point                    | 65.417000  | -65.083000  | 46             | Kaplan and Miller (2003)                             |

| Locality                       | Latitude  | Longitude   | Marine Limit  | Reference                                                |
|--------------------------------|-----------|-------------|---------------|----------------------------------------------------------|
| West Lynn                      | 42.366667 | -71.066667  | · 18          | Kave and Braghorn (1964)                                 |
| Gunnar Andersson Dal           | 82.500000 | -50.516667  | 116           | Kelly and Bennike (1992)                                 |
| J P Koch Fjord                 | 82.391667 | -40.500000  | 42            | Kelly and Bennike (1992)                                 |
| Kap Fulford                    | 82.296667 | -55.063333  | 3 131         | Kelly and Bennike (1992)                                 |
| Kap Wallen                     | 82.250000 | -48.583333  | 108           | Kelly and Bennike (1992)                                 |
| Th Thomsen Fjord               | 83.050000 | -43.400000  | ) 100         | Kelly and Bennike (1992)                                 |
| Booth Sound                    | 76.933333 | -71.083333  | 46            | Kelly <i>et al.</i> (1999)                               |
| Isbjorn O                      | 76.725000 | -73.116667  | 55            | Kelly <i>et al.</i> (1999)                               |
| Iterlak                        | 76.666667 | -69.416667  | 46            | Kelly <i>et al.</i> (1999)<br>Kelly <i>et al.</i> (1999) |
| Narssarssuk<br>Soundore Island | 76.455000 | -09.203333  | 5 37<br>N 40  | Kelly et al. (1999)<br>Kelly et al. (1999)               |
| Wolstenholm Fiord              | 76.666667 | -68 633333  | 40            | Kelly et al. (1999)<br>Kelly et al. (1999)               |
| Nisin kua                      | 67 233333 | -53 783333  | 140           | Kelly (1973)                                             |
| Ameralik                       | 64.333333 | -50.400000  | 80            | Kelly (1985)                                             |
| Imarnoit                       | 64.300000 | -52.066667  | · 90          | Kelly (1985)                                             |
| Marraq                         | 63.428333 | -51.201667  | 70            | Kelly (1985)                                             |
| Mellembygd                     | 62.066667 | -49.333333  | 53            | Kelly (1985)                                             |
| Melville Bugt                  | 76.000000 | -65.500000  | ) 17          | Kelly (1985)                                             |
| Narssaq                        | 60.908333 | -46.066667  | 52            | Kelly (1985)                                             |
| Qeqertat                       | 77.500000 | -66.666667  | 72            | Kelly (1985)                                             |
| Upernavik                      | 72.250000 | -56.000000  | ) 21          | Kelly (1985)                                             |
| Asiak River                    | 67.672800 | -114.481000 | 170           | Kerr <i>et al.</i> (1997)                                |
| Buchanan River                 | 69.766667 | -121.666660 | 50            | Kerr (1994)                                              |
| Coppermine River               | 70.000000 | -125.000000 | 170           | Kerr (1994)<br>Kerr (1994)                               |
| Darpley Bay                    | 69 583333 | -123 133330 | 25            | Kerr (1994)                                              |
| Bathurst Inlet head            | 66,500000 | -109.00000  | 223           | Kerr (1996)                                              |
| Bathurst Inlet head            | 66.000000 | -106.500000 | 228           | Kerr (1996)                                              |
| Bathurst Inlet West            | 67.500000 | -111.000000 | 210           | Kerr (1996)                                              |
| Bathurst Inlet West            | 67.750000 | -110.000000 | 209           | Kerr (1996)                                              |
| Croker River                   | 69.100000 | -119.500000 | 84            | Kerr (1996)                                              |
| Isabella Bay                   | 69.466667 | -68.866667  | 42            | King (1969)                                              |
| Sundance                       | 56.520000 | -94.080000  | 125           | Klassen (1986)                                           |
| Nelson River                   | 56.416667 | -94.216667  | 125           | Klassen (1986), Dredge and Nixon (1992)                  |
| Pond Inlet                     | /2./00000 | -77.966667  | 50            | Klassen (1993)                                           |
| Douton                         | 43.229700 | -70.938300  | 0 89          | Koteff et al. (1993)<br>Koteff et al. (1993)             |
| Eveter                         | 43.350000 | -70.370000  | / 04<br>) /1  | Koteff et al. (1993)                                     |
| Haverhill                      | 42.758333 | -71.031944  | 29            | Koteff <i>et al.</i> (1993)                              |
| lpswich                        | 42.679167 | -70.841667  | · 15          | Koteff <i>et al.</i> (1993)                              |
| Lee                            | 43.123000 | -71.012000  | 60            | Koteff <i>et al.</i> (1993)                              |
| Newburyport                    | 42.816700 | -70.916700  | 28            | Koteff et al. (1993)                                     |
| Rowley                         | 42.717000 | -70.879170  | 20            | Koteff <i>et al.</i> (1993)                              |
| Sanford                        | 43.439170 | -70.774700  | 79            | Koteff <i>et al.</i> (1993)                              |
| Waterboro                      | 43.535500 | -70.715600  | 91            | Koteff <i>et al.</i> (1993)                              |
| Upper Charlo                   | 48.001389 | -66.477778  | 53            | Lamothe (1992)                                           |
| Cape Butler                    | 77.513333 | -95.566667  | 121           | Lamoureux and England (2000)                             |
| Cornwall Island                | 77.780833 | -94.958333  | 5 115<br>7 50 | Lamoureux and England (2000)                             |
| Fladebudt                      | 77 266667 | -37.731007  | 50<br>54      | Landvik (1994)                                           |
| Hvalrosodden                   | 76 933333 | -20 250000  | ) 42          | Landvik (1994)                                           |
| Notre-Dame-des Laurentides     | 46.907500 | -71.298889  | 200           | LaSalle and Shilts (1993)                                |
| Saint-Henri-de-Lévis           | 46.637500 | -71.133333  | 200           | LaSalle and Shilts (1993)                                |
| Aupaluk                        | 59.250000 | -69.800000  | 152           | Lauriol (1982)                                           |
| Baie-aux-Feuilles nordest      | 58.900000 | -69.450000  | 178           | Lauriol (1982)                                           |
| Koksoak                        | 58.250000 | -68.300000  | 155           | Lauriol (1982)                                           |
| Lac Ballantyne                 | 58.400000 | -69.200000  | 150           | Lauriol (1982)                                           |
| Lac Bassingnac                 | 58.050000 | -70.100000  | 176           | Lauriol (1982)                                           |
| Lac Chavigny ouest             | 58.000000 | -75.500000  | 170           | Lauriol (1982)                                           |
| HIVERE AFRAUCE                 | 59.950000 | -70.000000  | 140           | Launor (1982)                                            |
|                                | 58.700000 | -71 050000  | 120           | Lauriol (1902)                                           |
| Rivière Mélèze                 | 57 250000 | -70 750000  | 195           | Lauriol (1982)                                           |
| Rivière Mélèze-2               | 57,500000 | -69,900000  | 195           | Lauriol (1982)                                           |
|                                |           |             |               |                                                          |

| Locality                  | Latitude   | Longitude   | Marine Limit | Reference                                                       |
|---------------------------|------------|-------------|--------------|-----------------------------------------------------------------|
| Digges Island             | 62.577222  | -78.090278  | 168          | Laymon (1988)                                                   |
| Foxe Peninsula            | 64.316667  | -76.566667  | 187          | Laymon (1988)                                                   |
| Foxe Peninsula            | 64.266667  | -76.233333  | 195          | Laymon (1988)                                                   |
| Ivujivik Harbour          | 62.400000  | -77.750000  | 152          | Laymon (1988)                                                   |
| Nottingham Island         | 63.433333  | -77.916667  | 176          | Laymon (1988)                                                   |
| Salisbury Island          | 63.583333  | -77.233333  | 150          | Laymon (1988)                                                   |
| Harbour Breton            | 47.510000  | -55.826667  | 23           | Leckie and McCann (1983)                                        |
| South Henik Lake          | 61.250000  | -96.500000  | 159          | Lee (1959)                                                      |
| Charterfield Inlat South  | 62.100007  | -95.083333  | 1/1          | Lee (1959, 1968)                                                |
|                           | 18 128223  | -91.000000  | 168          | Lee (1959), Flest <i>et al.</i> (1966)                          |
| Baker Lake                | 64 516667  | -96 050000  | 130          | Lee (1963)                                                      |
| Kazan Biyer               | 63 766667  | -95 666667  | 137          | Lee (1968)                                                      |
| Mistake Creek             | 64.316667  | -88.483333  | 148          | Lee (1968)                                                      |
| Expedition Fiord          | 79.333333  | -91.383333  | 93           | Lemmen <i>et al.</i> (1994)                                     |
| Expedition River          | 79.400000  | -90.733333  | 102          | Lemmen <i>et al.</i> (1994)                                     |
| Strand Fiord head         | 79.250000  | -90.283333  | 124          | Lemmen et al. (1994)                                            |
| Strand Fiord mouth        | 79.166667  | -91.783333  | 105          | Lemmen <i>et al.</i> (1994)                                     |
| Cape Discovery            | 83.050000  | -76.133333  | 68           | Lemmen (1989)                                                   |
| Disraeli Creek            | 82.950000  | -74.033333  | 78           | Lemmen (1989)                                                   |
| Disraeli Fiord centre     | 82.800000  | -73.850000  | 97           | Lemmen (1989)                                                   |
| Marvin Peninsula          | 83.016667  | -74.850000  | 74           | Lemmen (1989)                                                   |
| M'Clintock Inlet          | 82.633333  | -75.616667  | 122          | Lemmen (1989)                                                   |
| Eggleston Bay             | 63.216667  | -68.221667  | 104          | Lind in Andrews and Short (1983)                                |
| Bay d'Espoir              | 47.900000  | -55.791667  | 25           | Liverman (1994)                                                 |
| Musgrave Harbour          | 49.450000  | -53.970000  | 57           | Liverman (1994)                                                 |
| Port Blandford            | 48.350000  | -54.170000  | 30           | Liverman (1994)                                                 |
| Sam Ford Fiord            | 48.306944  | -08.803333  | 100          | Local (1977)                                                    |
| Sam Ford Flord            | 70.210007  | -71.300000  | 64<br>56     | Loken in Andrews and Drapier (1967)                             |
| Ikudiayuk Fiord outer     | 60 075556  | -64.200007  | 26           | Loken (1962)                                                    |
| Rvans Bay head            | 59.550000  | -64.100000  | 64           | Loken (1962)                                                    |
| Port Burwell              | 60.416667  | -64.816667  | 15           | Loken (1962), Prest <i>et al.</i> (1968), Vincent (1989)        |
| Akulliit 4                | 68.671167  | -51.116667  | 85           | Long and Roberts (2003)                                         |
| Umivik                    | 68.533333  | -52.850000  | 112          | Long and Roberts (2003)                                         |
| Arvenprinsen Ejland       | 69.761111  | -51.241667  | 73           | Long <i>et al.</i> (1999)                                       |
| Innaarsuit                | 68.616667  | -52.100000  | 110          | Long <i>et al.</i> (2003)                                       |
| Bond Inlet                | 62.205000  | -67.846667  | 46           | Manley and Miller (2001)                                        |
| Jackman Sound             | 62.358333  | -66.483333  | 86           | Manley and Miller (2001)                                        |
| Nobel Inlet               | 62.091667  | -66.133333  | 42           | Manley and Miller (2001)                                        |
| Pritzler Harbour          | 62.116667  | -67.350000  | 38           | Manley and Miller (2001)                                        |
| York Sound                | 62.408333  | -66.483333  | 80           | Manley and Miller (2001)                                        |
| Balcom Inlet              | 62.295000  | -68.591667  | 67           | Manley in Manley and Jennings (1996)                            |
| Pike Island               | 62 610000  | -07.903333  | 123          | Manley in Manley and Jennings (1996)                            |
| Puch Island               | 63 206667  | -00.173333  | 90           | Manley in Manley and Jennings (1990)                            |
| Bruce Harbour             | 62 773333  | -70 101667  | 98           | Manley in McNeely (2002)                                        |
| Ashe Inlet                | 62 600000  | -70.666667  | 112          | Manley (1996)                                                   |
| Big Island                | 62.558333  | -70,273333  | 115          | Manley (1996)                                                   |
| Canon Inlet               | 63.075000  | -71.350000  | 138          | Manley (1996)                                                   |
| Lake Harbour              | 62.783333  | -69.833333  | 95           | Manley (1996)                                                   |
| Soper Lake                | 62.891667  | -69.841667  | 91           | Manley (1996)                                                   |
| Soper Valley              | 62.968333  | -69.788333  | 102          | Manley (1996)                                                   |
| Chichagof Island          | 58.233333  | -135.750000 | 80           | Mann (1986)                                                     |
| Lac J'Arrive              | 49.248889  | -65.376389  | 56           | Marcoux and Richard (1995)                                      |
| Websters Corners          | 49.233333  | -122.493330 | 200          | Mathews et al. (1970), Clague et al. (1982)                     |
| Alberny                   | 49.253333  | -124.826660 | 91           | Mathews <i>et al.</i> (1970), Clague (1981)                     |
| Courtnay                  | 49.645000  | -125.005000 | 150          | Mathews <i>et al.</i> (1970), Clague (1981)                     |
| Englishman River          | 49.283333  | -124.266660 | 140          | Mathews <i>et al.</i> (1970), Clague (1981)                     |
| Bale Oblongue             | 62.450000  | -/6.600000  | 136          | Matthews in Andrews and Drapier (1967)                          |
| End Cove                  | 40,705,000 | -//.383333  | 170          | Iviallinews (1907), Gray <i>et al.</i> (1993)<br>McCupia (2002) |
| Sups AIIII<br>Western Arm | 49.725000  | -20.920333  | 0U<br>70     |                                                                 |
| Sainte-Christine          | 45.00000   | -30.330000  | 165          | McDonald (1969)                                                 |
|                           | 40.000000  | -12.44100/  | 105          |                                                                 |

| Locality                | Latitude  | Longitude   | Marine Limit   | Reference                                                                                                              |
|-------------------------|-----------|-------------|----------------|------------------------------------------------------------------------------------------------------------------------|
| Towson Point            | 75.883333 | -105.583330 | ) 101          | McLaren and Barnett (1978)                                                                                             |
| Tingmisut Lake          | 75.950000 | -107.783330 | ) 82           | McLaren and Barnett (1978) (suspect: cf Hanson, 2003)                                                                  |
| Nias Point              | 75.506667 | -108.250000 | ) 55           | McLaren and Barnett (1978), Hodgson et al. (1984)                                                                      |
| Brodie Bay              | 67.916667 | -66.616667  | <b>′</b> 54    | Mears in Andrews and Miller (1972)                                                                                     |
| Scott Inlet             | 71.200000 | -71.366667  | <b>′</b> 46    | Miller <i>et al.</i> (1977)                                                                                            |
| Confereration Fiord     | 68.200000 | -67.383333  | 3 43           | Miller in Andrews (1975)                                                                                               |
| Kangetokjuak Fiord head | 66.583333 | -62.950000  | ) 24           | Miller in Andrews (1975)                                                                                               |
| North Pangnirtung Fiord | 66.950000 | -64.650000  | ) 15           | Miller in Andrews (1975)                                                                                               |
| Itirbilung Fiord        | 69.316667 | -68.100000  | ) 54           | Miller in Andrews (1976)                                                                                               |
| Newton Fiord            | 63.116667 | -66.216667  | 7 70           | Miller in Kaufman and Williams (1992)                                                                                  |
| Juneau                  | 58.333333 | -134.434720 | ) 230          | Miller (1973)                                                                                                          |
| Hamlen Bay              | 63.073333 | -66.458333  | 8 81           | Miller (1979)                                                                                                          |
| Baere Sound             | 62.500000 | -64.833333  | 3 46           | Miller (1980)                                                                                                          |
| Gold Cove               | 62.950000 | -65.833333  | 3 74           | Miller (1980)                                                                                                          |
| Peter Force Sound       | 63.016667 | -65.783333  | 3 75           | Miller (1980)                                                                                                          |
| Rivière La Fourcha      | 40.570833 | -72.420833  | 200            |                                                                                                                        |
| Roy Fiord               | 40.004722 | -72.034107  | 200<br>7 120   | O(Coficient at al. (2000))                                                                                             |
| Bear Corner             | 78 116667 | -00.21000/  | 120            | O'Cofaigh et al. (2000)                                                                                                |
| Blind Fiord middle      | 78 222222 | -85 950000  | , 142<br>) 133 | O'Cofaigh et al. (2000)                                                                                                |
| Blind Fiord mouth       | 78 133333 | -86 666667  | 7 138          | O'Cofaigh et al. (2000)                                                                                                |
| Irene Bay               | 79 016667 | -81 466667  | 75             | O'Cofaigh et al. (2000)                                                                                                |
| Jaeger Bay              | 78.050000 | -84.783333  | 3 106          | O'Cofaigh <i>et al.</i> (2000)                                                                                         |
| Starfish Bay head       | 78.200000 | -84.000000  | ) 86           | O'Cofaigh <i>et al.</i> (2000)                                                                                         |
| Starfish Bay mouth      | 78.150000 | -84.983333  | 3 110          | O'Cofaigh <i>et al.</i> (2000)                                                                                         |
| Stor Island             | 78.883333 | -86.233333  | 3 151          | O'Cofaigh <i>et al.</i> (2000)                                                                                         |
| Strathcona Fiord        | 78.700000 | -82.850000  | ) 102          | O'Cofaigh et al. (2000)                                                                                                |
| Strathcona Fiord        | 78.750000 | -83.383333  | 3 122          | O'Cofaigh et al. (2000)                                                                                                |
| Trappers Cove           | 78.650000 | -86.716667  | ' 118          | O'Cofaigh <i>et al</i> . (2000)                                                                                        |
| Trold Fiord mouth       | 78.100000 | -85.466667  | ' 143          | O'Cofaigh <i>et al</i> . (2000)                                                                                        |
| Côte Verte              | 49.400000 | -63.580000  | ) 80           | Painchaud <i>et al.</i> (1984)                                                                                         |
| Falaise Ste-Marie       | 49.666389 | -63.912500  | 80             | Painchaud <i>et al.</i> (1984)                                                                                         |
| Black Lake              | 44.500000 | -75.550000  | ) 120          | Pair and Rodrigues (1993)                                                                                              |
| Malone                  | 44.850000 | -74.300000  | ) 148          | Pair and Rodrigues (1993)                                                                                              |
| Adamsville              | 45.283333 | -72.783333  | 3 165          | Parent and Occhietti (1988)                                                                                            |
| Saint-Dominique         | 45.316667 | -74.150000  | 180            | Parent and Occhietti (1988)                                                                                            |
| Warwick                 | 45.943056 | -72.002500  | ) 1/5          | Parent and Occhietti (1988)                                                                                            |
| Narpaing Flord central  | 67.791667 | -65.616667  | 40             | Pheasant and Andrews (1973)                                                                                            |
| Okoo Boy mouth          | 67.00000  | -00.410007  | 17             | Pheasant and Andrews (1973)                                                                                            |
|                         | 67.900000 | -65 166667  | 7 40<br>7 34   | Pheasant and Andrews (1973)                                                                                            |
| Baie Verte              | 49 910000 | -56 275833  | 8 61           | Prest et al. (1968)                                                                                                    |
| Borden-Carleton         | 46 250000 | -63 700000  | ) 0            | Prest <i>et al.</i> (1968)                                                                                             |
| Cape Bathurst           | 70,700000 | -128.300000 | ) ()           | Prest <i>et al.</i> (1968)                                                                                             |
| Chicoutimi              | 48.250000 | -71.100000  | ) 167          | Prest <i>et al.</i> (1968)                                                                                             |
| Duffy Lake              | 62.816667 | -94.800000  | ) 168          | Prest <i>et al.</i> (1968)                                                                                             |
| Emerald Island          | 76.700000 | -114.000000 | ) 27           | Prest <i>et al.</i> (1968)                                                                                             |
| Frozen Strait           | 66.000000 | -86.500000  | ) 141          | Prest <i>et al.</i> (1968)                                                                                             |
| Kensington              | 46.450000 | -63.750000  | ) 3            | Prest <i>et al.</i> (1968)                                                                                             |
| Kuugaq River            | 62.140278 | -77.879167  | ' 167          | Prest et al. (1968)                                                                                                    |
| Lennox                  | 46.600000 | -63.850000  | ) 9            | Prest <i>et al</i> . (1968)                                                                                            |
| Magdalen Islands        | 47.250000 | -61.900000  | ) 37           | Prest <i>et al.</i> (1968)                                                                                             |
| Meighen Island          | 79.900000 | -100.000000 | ) 24           | Prest <i>et al.</i> (1968)                                                                                             |
| Mount George            | 68.658333 | -107.016660 | ) 195          | Prest <i>et al</i> . (1968)                                                                                            |
| Netteling Lake          | 66.000000 | -71.750000  | ) 97           | Prest <i>et al.</i> (1968)                                                                                             |
| Parsons Point           | 49.033333 | -53.866667  | <b>4</b> 0     | Prest <i>et al.</i> (1968)                                                                                             |
| Pugwash                 | 45.900000 | -63.700000  | ) 0            | Prest <i>et al.</i> (1968)                                                                                             |
| Stewart                 | 56.000000 | -130.000000 | ) 148          | Prest <i>et al.</i> (1968)                                                                                             |
| Iruro                   | 45.200000 | -63.400000  | ) ()           | Prest <i>et al.</i> (1968)                                                                                             |
| wager Bay head          | 65.500000 | -89.800000  | ) 114          | Prest <i>et al.</i> (1968)                                                                                             |
| vvager Bay mouth        | 65.500000 | -87.500000  | 133            | Prest et al. (1968)<br>Dreat et al. (1968). Crain (unnublished merch). Dute (2000)                                     |
| Nurray Maxwell Bay East | 70.050000 | -80.220000  | 05 OF          | Prest et al. (1968), Graig (unpublished map), Dyke (2003)<br>Prost at al. (1968), Graig (unpublished map), Duke (2003) |
| Darplay Bay Southwoot   | 10.01/000 | -01.030000  | ) <u>26</u>    | Frest et al. (1900), Graig (unpublished map), Dyke (2003)<br>Prost at al. (1968), Kerr (1996)                          |
| Darniey Day SouthWest   | 09.000000 | -124.00000  | , 20           | 1 1631 61 al. (1300), Nell (1330)                                                                                      |

| Locality                   | Latitude   | Longitude   | Marine Limit | Reference                                                               |
|----------------------------|------------|-------------|--------------|-------------------------------------------------------------------------|
| Victoria                   | 48.413333  | -123.355000 | 75           | Prest <i>et al.</i> (1968), Mathews <i>et al.</i> (1970), Clague (1981) |
| Sabine Peninsula Northeast | 76.750000  | -108.500000 | 40           | Prest et al. (1968), McLaren and Barnett (1978)                         |
| Devels Back Brook          | 46.900000  | -65.500000  | 64           | Prest et al. (1968), Rampton et al. (1984)                              |
| Brier Island               | 44.245833  | -66.388333  | 45           | Prest <i>et al</i> . (1972)                                             |
| Digby                      | 44.620000  | -65.760000  | 40           | Prest <i>et al</i> . (1972)                                             |
| Humber Gorge               | 48.948333  | -57.846667  | 49           | Prest <i>et al</i> . (1972)                                             |
| Red Head                   | 43.900000  | -66.250000  | 0            | Prest <i>et al</i> . (1972)                                             |
| Salmon River               | 44.050000  | -66.170000  | 10           | Prest <i>et al</i> . (1972)                                             |
| Dundas Harbour             | 74.500000  | -82.500000  | 26           | Prest (1952), Prest <i>et al.</i> (1968)                                |
| Miminegesh                 | 46.866667  | -64.233333  | 24           | Prest (1973)                                                            |
| Flatland                   | 48.000000  | -66.750000  | 47           | Rampton <i>et al.</i> (1984)                                            |
| Kierstead                  | 45.500000  | -65.900000  | 60           | Rampton <i>et al.</i> (1984)                                            |
| Waterside                  | 45.600000  | -64.750000  | 33           | Rampton <i>et al.</i> (1984)                                            |
| Wirral                     | 45.250000  | -66.250000  | 58           | Rampton <i>et al.</i> (1984)                                            |
| Zealand                    | 46.000000  | -67.000000  | 73           | Rampton <i>et al.</i> (1984)                                            |
| Kalifonsky Beach           | 60.500000  | -151.333330 | 25           | Reger <i>et al.</i> (1996)                                              |
| Beautort Lakes             | 81.880000  | -63.330000  | 116          | Retelle (1986)                                                          |
| Spear Island               | 47.100000  | -52.750000  | 11           | Rogerson and Tucker (1972)                                              |
| I ne Backway               | 54.083333  | -58.116667  | 90           | Rogerson (1977)                                                         |
| Band Island 55 km East     | 53.000000  | -57.250000  | 140          | Rogerson (1977), Vincent (1969)                                         |
| Ruttorfly Lako             | 60.2500007 | 75 916667   | 140          | Sina (1064)                                                             |
| Isortog Fiord boad         | 69.350000  | -75.610007  | 94           | Sim (1964)<br>Sim (1964) Androws (1966)                                 |
| Isortog Fiord mouth        | 69.870000  | -70.900000  | 89           | Sim (1964), Andrews (1966)                                              |
| Tikerarsuk Point           | 69 416667  | -76 400000  | 94           | Sim (1964), Andrews (1966), King and Buckley (1967)                     |
| Ekwan Biyer                | 53 533333  | -86 050000  | 167          | Skinner (1973)                                                          |
| Moose Biver                | 50.000000  | -83.000000  | 140          | Skinner (1973)                                                          |
| Otter Rapids               | 50.275000  | -81.650000  | 164          | Skinner (1973). Dredge and Cowan (1989)                                 |
| Clvde Inlet mouth          | 70.150000  | -68.933333  | 34           | Smith in Andrews and Drapier (1967)                                     |
| Sam Ford Fiord head        | 70.000000  | -71.616667  | 66           | Smith in Andrews and Drapier (1967)                                     |
| Chandler Fiord             | 81.716667  | -69.383333  | 87           | Smith (1999)                                                            |
| Traytown                   | 48.666667  | -53.966667  | 39           | Sommerville (1997)                                                      |
| Spencers Island            | 45.358611  | -64.708889  | 32           | Stea and Wightman (1987)                                                |
| Fort Williams              | 44.950000  | -64.300000  | 0            | Stea <i>et al.</i> (2001)                                               |
| Murray Beach               | 46.000000  | -64.250000  | 15           | Stea <i>et al.</i> (2001)                                               |
| Sandy Cove                 | 44.500000  | -65.900000  | 41           | Stea <i>et al.</i> (2001)                                               |
| Burlington                 | 44.466700  | -73.200000  | 104          | Stewart and MacClintock (1969)                                          |
| Charlotte                  | 44.300000  | -73.250000  | 84           | Stewart and MacClintock (1969)                                          |
| East Highgate              | 44.916700  | -72.983300  | 153          | Stewart and MacClintock (1969)                                          |
| Vergennes                  | 44.166700  | -73.250000  | 75           | Stewart and MacClintock (1969)                                          |
| West Bridport              | 43.900000  | -73.383300  | 67           | Stewart and MacClintock (1969)                                          |
|                            | 42.830000  | -71.000000  | 32           | Stone and Peper (1982)                                                  |
| Clifton Point              | 42.250000  | -71.000000  | 100          | Stone and MoMartin (1995)                                               |
| Harding Biver              | 68 783333  | -116 033330 | 130          | St-Onge and McMartin (1995)                                             |
| Richardson River           | 67 866667  | -117 166660 | 150          | St-Onge and McMartin (1995)                                             |
| Bernard Harbour            | 68.542222  | -115.084440 | 137          | St-Onge and McMartin (1995). Kerr (1996)                                |
| Coutts Inlet               | 71.450000  | -76.333333  | 72           | Stravers and Svvitski (1991)                                            |
| Feachem Vallev             | 71.900000  | -74.300000  | 34           | Stravers and Svvitski (1991)                                            |
| Omega Bay                  | 71.450000  | -74.866667  | 73           | Stravers and Syvitski (1991)                                            |
| Paquet Bay                 | 71.716667  | -77.700000  | 76           | Stravers and Syvitski (1991)                                            |
| Paquet Bay                 | 72.000000  | -79.250000  | 88           | Stravers and Syvitski (1991)                                            |
| Rannock Arm                | 71.450000  | -75.133333  | 83           | Stravers and Syvitski (1991)                                            |
| Charles Francis Hall Bay   | 62.650000  | -66.750000  | 70           | Stravers et al. (1992)                                                  |
| Kendall Strait             | 62.156667  | -66.040000  | 50           | Stravers et al. (1992)                                                  |
| Midnight Harbour           | 62.483333  | -66.500000  | 94           | Stravers et al. (1992)                                                  |
| Promontory Bay North       | 62.583333  | -66.616667  | 75           | Stravers <i>et al.</i> (1992)                                           |
| Angujaetorfiup kua         | 66.716667  | -51.400000  | 115          | Ten Brink (1974)                                                        |
| Aussivit                   | 66.566667  | -52.400000  | 125          | Ien Brink (1974)                                                        |
| latsip ata                 | 66.833333  | -51.083333  | 100          | Ien Brink (1974)                                                        |
|                            | 66.833333  | -50./16667  | 65           | Thermoor at a (1900)                                                    |
| Augusta                    | 44.315566  | -69./92694  | 105          | Thompson <i>et al.</i> (1989)                                           |
| Dolby Pond                 | 44.994000  | -03.070447  | 113          | Thompson et al. (1989) Thompson et al. (1989)                           |
| Dolog I olig               | -0.000-00  | 00.000-00   | 110          |                                                                         |

|                       | Latituda  | Longitudo   | Marina Limit | Deference                              |
|-----------------------|-----------|-------------|--------------|----------------------------------------|
| Locality              | Latitude  | Longitude   | Marine Limit | Relefence                              |
| Hampden               | 44.710603 | -68.881272  | 97           | Thompson <i>et al</i> . (1989)         |
| Lake Auburn           | 44.129853 | -70.238983  | 104          | Thompson <i>et al</i> . (1989)         |
| Mount Desert          | 44.312591 | -68.248275  | 71           | Thompson <i>et al</i> . (1989)         |
| Norridgewock          | 44.723800 | -69.822266  | 123          | Thompson <i>et al.</i> (1989)          |
| Pineo Ridge East      | 44.669450 | -67.833961  | 77           | Thompson <i>et al.</i> (1989)          |
| Round Lake            | 45.030716 | -67.256727  | 59           | Thompson <i>et al.</i> (1989)          |
| Searsport             | 44.451538 | -68.959733  | 89           | Thompson <i>et al.</i> (1989)          |
| Port Gamble           | 47.900000 | -122.600000 | 30           | Thorson (1980)                         |
| Seattle               | 47.600000 | -122.333333 | 0            | Thorson (1980)                         |
| Burin Peninsula West  | 47.400000 | -55.250000  | 16           | Tucker <i>et al</i> . (1982)           |
| Fortune               | 46.900000 | -55.950000  | 6            | Tucker <i>et al</i> . (1982)           |
| Marystown             | 47.200000 | -55.000000  | 5            | Tucker <i>et al.</i> (1982)            |
| Halls Bay             | 49.483333 | -56.191667  | 76           | Tucker (1974)                          |
| Botwood               | 49.100000 | -55.366667  | 53           | Twenhofel (1947), Jenness (1960)       |
| Bonaventure           | 48.073611 | -65.497222  | 46           | Veillette and Cloutier (1993)          |
| Cap Rosier            | 44.312778 | -68.829167  | 75           | Veillette and Cloutier (1993)          |
| Grande Rivière        | 48.395000 | -64.513333  | 38           | Veillette and Cloutier (1993)          |
| Nouvelle              | 48.133333 | -66.291667  | 55           | Veillette and Cloutier (1993)          |
| Restigouche           | 48.048333 | -66.700556  | 63           | Veillette and Cloutier (1993)          |
| Rivière au Renard     | 48.987500 | -64.418333  | 38           | Veillette and Cloutier (1993)          |
| Sainte-Anne-des-Monts | 49.119444 | -66.488889  | 75           | Veillette and Cloutier (1993)          |
| Sainte-Blandine       | 48.397222 | -68.433333  | 140          | Veillette and Cloutier (1993)          |
| La Grand Rivière      | 53.583333 | -77.500000  | 270          | Vincent (1977)                         |
| Mercy Bay             | 74.025000 | -118.908333 | 30           | Vincent (1983)                         |
| Pennell Point         | 73.916667 | -124.000000 | 20           | Vincent (1983)                         |
| Sachs Harbour         | 71.950000 | -125.416667 | 20           | Vincent (1983), Dyke and Dredge (1989) |
| Eastmain River        | 52.222222 | -77.916667  | 270          | Vincent (1989)                         |
| Harricana River       | 50.500000 | -78.800000  | 213          | Vincent (1989)                         |
| James Bay East        | 54.300000 | -76.250000  | 268          | Vincent (1989)                         |
| La Grande Rivière     | 53.600000 | -75.250000  | 246          | Vincent (1989)                         |
| Matagami-LG2 road     | 52.216667 | -77.133333  | 270          | Vincent (1989)                         |
| Matagami-LG2 road     | 53.350000 | -77.566667  | 270          | Vincent (1989)                         |
| Métabetchouan         | 48.433333 | -71.850000  | 198          | Vincent (1989)                         |
| Poste-de-la-Baleine   | 55.283333 | -77.766667  | 270          | Vincent (1989)                         |
| Graveyard Bay West    | 70.650000 | -116.371660 | 90           | Vincent (unpublished)                  |
| Mount Pelly           | 69.150000 | -104.900000 | 190          | Washburn (1947)                        |