946 research outputs found

    Metal hydride heat pump engineering demonstration and evaluation model

    Get PDF
    Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS)

    Investigation of long term stability in metal hydrides

    Get PDF
    It is apparent from the literature and the results of this study that cyclic degradation of AB(5) type metal hydrides varies widely according to the details of how the specimens are cycled. The Rapid Cycle Apparatus (RCA) used produced less degradation in 5000 to 10000 cycles than earlier work with a Slow Cycle Apparatus (SCA) produced in 1500 cycles. Evidence is presented that the 453 K (356 F) Thermal Aging (TA) time spent in the saturated condition causes hydride degradation. But increasing the cooling (saturation) period in the RCA did not greatly increase the rate of degradation. It appears that TA type degradation is secondary at low temperatures to another degradation mechanism. If rapid cycles are less damaging than slow cycles when the saturation time is equal, the rate of hydriding/dehydriding may be an important factor. The peak temperatures in the RCA were about 30 C lower than the SCA. The difference in peak cycle temperatures (125 C in the SCA, 95 C in RCA) cannot explain the differences in degradation. TA type degradation is similar to cyclic degradation in that nickel peaks and line broadening are observed in X ray diffraction patterns after either form of degradation

    Health Literacy: An Intervention to Improve Health Outcomes

    Get PDF
    WHO has defined health literacy as the degree to which individuals have the capacity to obtain, process and understand basic health information and services needed to make basic health decisions for themselves and their loved ones. The purpose of this article is to outline the scope of low health literacy as a concept and explore some appropriate interventions that researchers and healthcare professionals may use to reduce its negative impact on health outcomes such as mortality. The authors conclude by identifying areas of research that are needed to advance the conceptualization of health literacy in reducing hospital mortality and morbidity

    Silver-loaded nanoparticles affect ex-vivo mechanical behavior and mineralization of dentin

    Get PDF
    The aim was to evaluate the effect of silver loaded nanoparticles (NPs) application on the triboscopic, crystallographic and viscoelastic properties of demineralized dentin. Polymethylmetacrylate-based NPs and Ag loaded NPs were applied on demineralized dentin. Treated and untreated surfaces were probed by a nanoindenter to test viscoelasticity, and by atomic force microscopy to test nanoroughness and collagen fibril diameter. X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-field imaging were also used. Dentin treated with Ag-NPs attained the lowest complex modulus, and the highest tan delta values after 7 days of storage. Dentin treated with undoped-NPs achieved the lowest nanoroughness and the greatest collagen bandwidths among groups. Crystals were identified as hydroxyapatite with the highest crystallographic maturity and crystallite size in dentin treated with undoped-NPs. Texture increased in all samples from 24 h to 7 d, except in dentin surfaces treated with Ag-NPs at 310 plane. Polyhedral, block-like, hexagonal or plate-like shaped apatite crystals constituted the bulk of minerals in dentin treated with Ag-NPs, after 7 d. Polyhedral or rounded/drop-like, and polymorphic in strata crystal apatite characterized the minerals when undoped-NPs were used, with more crystalline characteristics after 7 d than that found when Ag-NPs were applied. Ag-NPs application did not improve the mechanical performance of dentin and did not produce dentin remineralization. However, energy was dissipated through the dentin without showing stress concentration; contrary was occurring at dentin treated with undoped-NPs, that provoked bridge-like mineral deposits at the dentin surface. Ag-NPs application did not enhance the mechanical properties of cervical dentin, though the energy dissipation did not damage the dentin structure. Remineralization at dentin was not produced after Ag-NPs application, though improved crystallinity may lead to increase stability of the apatite that was generated at the dentin surface

    Research Priorities for Children's Nursing in Ireland: A Delphi Study

    Get PDF
    This paper is a report of a study which identified research priorities for children's nursing in an acute care setting in Ireland. A limited number of studies have examined research priorities for children's nursing. This study was undertaken against the backdrop of significant proposed changes to the delivery of of children's healthcare. A three round Delphi survey design was used to identify and rate the importance of research priorities for children's nursing. In round 1 participants were asked to identify five of the most important research priorities for children's nursing. Participants in round 2 were asked to rate the importance of each of each research priority on a seven point Likert scale. In round 3 participants were presented with the mean scoreof each research priority from the second questionaire, and again asked to consider the importance of each topic on a 7 point Likert scale. The aim was to reach a consensus on the priorities. The top three priorities identified were recognition and care of the deteriorating child, safe transfer of the critically ill child between acute health care facilities, and the child and families perceptions of care at end-of life. The wide variation of priorities reflects the scope of care delivery of children's nurses and mirrors many global care concerns in caring for children

    Evolution favors protein mutational robustness in sufficiently large populations

    Get PDF
    BACKGROUND: An important question is whether evolution favors properties such as mutational robustness or evolvability that do not directly benefit any individual, but can influence the course of future evolution. Functionally similar proteins can differ substantially in their robustness to mutations and capacity to evolve new functions, but it has remained unclear whether any of these differences might be due to evolutionary selection for these properties. RESULTS: Here we use laboratory experiments to demonstrate that evolution favors protein mutational robustness if the evolving population is sufficiently large. We neutrally evolve cytochrome P450 proteins under identical selection pressures and mutation rates in populations of different sizes, and show that proteins from the larger and thus more polymorphic population tend towards higher mutational robustness. Proteins from the larger population also evolve greater stability, a biophysical property that is known to enhance both mutational robustness and evolvability. The excess mutational robustness and stability is well described by existing mathematical theories, and can be quantitatively related to the way that the proteins occupy their neutral network. CONCLUSIONS: Our work is the first experimental demonstration of the general tendency of evolution to favor mutational robustness and protein stability in highly polymorphic populations. We suggest that this phenomenon may contribute to the mutational robustness and evolvability of viruses and bacteria that exist in large populations

    Consequences of in-situ strategies for the conservation of plant genetic diversity

    Get PDF
    Conservation biologists have drawn up a range of guidelines for the conservation of genetic diversity—to maximise the chances that populations of threatened species persist, and to conserve this variation for its potential utility. However, our understanding of the effectiveness of conservation guidelines for maintaining genetic diversity in situ is limited. Furthermore, we lack information on how species-level variation in mating system affects these genetic conservation strategies. We used the British geographical ranges of eight widespread but declining plant species, varying in breeding system, as a model to assess the effectiveness of guidelines for the in-situ conservation of neutral genetic diversity. By applying simulated in-situ conservation scenarios to amplified fragment length polymorphism data, we show that the conservation of one population (the “minimum-set” approach) would retain ~ 70% of common allelic variation, but few or no rare alleles (alleles with frequency ≤ 0.05). Our results indicate that the conservation of > 35% of populations would be needed to reach the Convention on Biological Diversity's recommendation to conserve 70% of genetic diversity in situ, as applied to rare alleles (~ 10 populations within each species' British range). The capture of genetic variation in simulated conservation networks was insensitive to breeding system. However, a spatially stratified approach to population selection led to significantly greater capture rates for common alleles in two of our study species, relative to a spatially random strategy. Our study highlights the challenges of conserving genetic variation, and emphasises the vulnerability of genetic biodiversity to reductions in the extent of species' ranges
    corecore