400 research outputs found

    Structure of the RBM7-ZCCHC8 core of the NEXT complex reveals connections to splicing factors

    No full text
    The eukaryotic RNA exosome participates extensively in RNA processing and degradation. In human cells, three accessory factors (RBM7, ZCCHC8 and hMTR4) interact to form the nuclear exosome targeting (NEXT) complex, which directs a subset of non-coding RNAs for exosomal degradation. Here we elucidate how RBM7 is incorporated in the NEXT complex. We identify a proline-rich segment of ZCCHC8 as the interaction site for the RNA-recognition motif (RRM) of RBM7 and present the crystal structure of the corresponding complex at 2.0 resolution. On the basis of the structure, we identify a proline-rich segment within the splicing factor SAP145 with strong similarity to ZCCHC8. We show that this segment of SAP145 not only binds the RRM region of another splicing factor SAP49 but also the RRM of RBM7. These dual interactions of RBM7 with the exosome and the spliceosome suggest a model whereby NEXT might recruit the exosome to degrade intronic RNAs

    Numerical simulation of the thermal fragmentation process in fullerene C60

    Full text link
    The processes of defect formation and annealing in fullerene C60 at T=(4000-6000)K are studied by the molecular dynamics technique with a tight-binding potential. The cluster lifetime until fragmentation due to the loss of a C2 dimer has been calculated as a function of temperature. The activation energy and the frequency factor in the Arrhenius equation for the fragmentation rate have been found to be Ea = (9.2 +- 0.4) eV and A = (8 +- 1)10^{19} 1/s. It is shown that fragmentation can occur after the C60 cluster loses its spherical shape. This fact must be taken into account in theoretical calculations of Ea.Comment: 12 pages, 3 figure

    A phase II study of Epirubicin in oxaliplatin-resistant patients with metastatic colorectal cancer and <i>TOP2A</i> gene amplification

    Get PDF
    ᅟ: The overall purpose of this study is to provide proof of concept for introducing the anthracycline epirubicin as an effective, biomarker-guided treatment for metastatic colorectal cancer (mCRC) patients who are refractory to treatment with oxaliplatin-based chemotherapy and have TOP2A gene amplification in their tumor cells. BACKGROUND: Epirubicin is an anthracycline that targets DNA topoisomerase 2-α enzyme encoded by the TOP2A gene. It is used for treatment of several malignancies, but currently not in CRC. TOP2A gene amplifications predict improved efficacy of epirubicin in patients with breast cancer and thus could be an alternative option for patients with CRC and amplified TOP2A gene. We have previously analysed the frequency of TOP2A gene aberrations in CRC and found that 46.6 % of these tumors had TOP2A copy gain and 2.0 % had loss of TOP2A when compared to adjacent normal tissue. The TOP2A gene is located on chromosome 17 and when the TOP2A/CEN-17 ratio was applied to identify tumors with gene loss or amplifications, 10.5 % had a ratio ≥ 1.5 consistent with gene amplification and 2.6 % had a ratio ≤ 0.8 suggesting gene deletions. Based on these observations and the knowledge gained from treatment of breast cancer patients, we have initiated a prospective clinical, phase II protocol using epirubicin (90 mg/m2 iv q 3 weeks) in mCRC patients, who are refractory to treatment with oxaliplatin. METHODS/DESIGN: The study is an open label, single arm, phase II study, investigating the efficacy of epirubicin in patients with oxaliplatin refractory mCRC and with a cancer cell TOP2A/CEN-17 ratio ≥ 1.5. TOP2A gene amplification measured by fluorescence in situ hybridization. A total of 25 evaluable patients (15 + 10 in two steps) will be included (Simon’s two-stage minimax design). Every nine weeks, response is measured by computed tomography imaging and evaluated according to RECIST 1.1. The primary end-point of the study is progression-free survival. TRIAL REGISTRATION: Eudract no. 2013-001648-79

    Linear Wave Interaction with a Vertical Cylinder of Arbitrary Cross Section: An Asymptotic Approach

    Get PDF
    An asymptotic approach to the linear problem of regular water waves interacting with a vertical cylinder of an arbitrary cross section is presented. The incident regular wave was one-dimensional, water was of finite depth, and the rigid cylinder extended from the bottom to the water surface. The nondimensional maximum deviation of the cylinder cross section from a circular one plays the role of a small parameter of the problem. A fifth-order asymptotic solution of the problem was obtained. The problems at each order were solved by the Fourier method. It is shown that the first-order velocity potential is a linear function of the Fourier coefficients of the shape function of the cylinder, the second-order velocity potential is a quadratic function of these coefficients, and so on. The hydrodynamic forces acting on the cylinder and the water surface elevations on the cylinder are presented. The present asymptotic results show good agreement with numerical and experimental results of previous investigations. Long-wave approximation of the hydrodynamic forces was derived and used for validation of the asymptotic solutions. The obtained values of the forces are exact in the limit of zero wave numbers within the linear wave theory. An advantage of the present approach compared with the numerical solution of the problem by an integral equation method is that it provides the forces and the diffracted wave field in terms of the coefficients of the Fourier series of the deviation of the cylinder shape from the circular one. The resulting asymptotic formula can be used for optimization of the cylinder shape in terms of the wave loads and diffracted wave fields

    Specific Y14 domains mediate its nucleo-cytoplasmic shuttling and association with spliced mRNA

    Get PDF
    Pre-mRNA splicing deposits multi-protein complexes, termed exon junction complexes (EJCs), on mRNAs near exon-exon junctions. The core of EJC consists of four proteins, eIF4AIII, MLN51, Y14 and Magoh. Y14 is a nuclear protein that can shuttle between the nucleus and the cytoplasm, and binds specifically to Magoh. Here we delineate a Y14 nuclear localization signal that also confers its nuclear export, which we name YNS. We further identified a 12-amino-acid peptide near Y14's carboxyl terminus that is required for its association with spliced mRNAs, as well as for Magoh binding. Furthermore, the Y14 mutants, which are deficient in binding to Magoh, could still be localized to the nucleus, suggesting the existence of both the nuclear import pathway and function for Y14 unaccompanied by Magoh

    Crystal structure and assembly of the functional Nanoarchaeum equitans tRNA splicing endonuclease

    Get PDF
    The RNA splicing and processing endonuclease from Nanoarchaeum equitans (NEQ) belongs to the recently identified (αβ)2 family of splicing endonucleases that require two different subunits for splicing activity. N. equitans splicing endonuclease comprises the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Here, we report the crystal structure of the functional NEQ enzyme at 2.1 Å containing both subunits, as well as that of the NEQ261 subunit alone at 2.2 Å. The functional enzyme resembles previously known α2 and α4 endonucleases but forms a heterotetramer: a dimer of two heterodimers of the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Surprisingly, NEQ261 alone forms a homodimer, similar to the previously known homodimer of the catalytic subunit. The homodimers of isolated subunits are inhibitory to heterodimerization as illustrated by a covalently linked catalytic homodimer that had no RNA cleavage activity upon mixing with the structural subunit. Detailed structural comparison reveals a more favorable hetero- than homodimerization interface, thereby suggesting a possible regulation mechanism of enzyme assembly through available subunits. Finally, the uniquely flexible active site of the NEQ endonuclease provides a possible explanation for its broader substrate specificity

    The RNA-Binding Protein KSRP Promotes Decay of β-Catenin mRNA and Is Inactivated by PI3K-AKT Signaling

    Get PDF
    β-catenin plays an essential role in several biological events including cell fate determination, cell proliferation, and transformation. Here we report that β-catenin is encoded by a labile transcript whose half-life is prolonged by Wnt and phosphatidylinositol 3-kinase–AKT signaling. AKT phosphorylates the mRNA decay-promoting factor KSRP at a unique serine residue, induces its association with the multifunctional protein 14-3-3, and prevents KSRP interaction with the exoribonucleolytic complex exosome. This impairs KSRP's ability to promote rapid mRNA decay. Our results uncover an unanticipated level of control of β-catenin expression pointing to KSRP as a required factor to ensure rapid degradation of β-catenin in unstimulated cells. We propose KSRP phosphorylation as a link between phosphatidylinositol 3-kinase–AKT signaling and β-catenin accumulation

    A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity

    Get PDF
    tRNA splicing endonucleases, essential enzymes found in Archaea and Eukaryotes, are involved in the processing of pre-tRNA molecules. In Archaea, three types of splicing endonuclease [homotetrameric: α4, homodimeric: α2, and heterotetrameric: (αβ)2] have been identified, each representing different substrate specificity during the tRNA intron cleavage. Here, we discovered a fourth type of archaeal tRNA splicing endonuclease (ε2) in the genome of the acidophilic archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2 and its closely related species, ARMAN-1. The enzyme consists of two duplicated catalytic units and one structural unit encoded on a single gene, representing a novel three-unit architecture. Homodimeric formation was confirmed by cross-linking assay, and site-directed mutagenesis determined that the conserved L10-pocket interaction between catalytic and structural unit is necessary for the assembly. A tRNA splicing assay reveal that ε2 endonuclease cleaves both canonical and non-canonical bulge–helix–bulge motifs, similar to that of (αβ)2 endonuclease. Unlike other ARMAN and Euryarchaeota, tRNAs found in ARMAN-2 are highly disrupted by introns at various positions, which again resemble the properties of archaeal species with (αβ)2 endonuclease. Thus, the discovery of ε2 endonuclease in an archaeon deeply branched within Euryarchaeota represents a new example of the coevolution of tRNA and their processing enzymes
    corecore