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ABSTRACT5

An asymptotic approach to the linear problem of regular water waves interacting with6

a vertical cylinder of arbitrary cross section is presented. The incident regular wave is one-7

dimensional, water is of finite depth, and the rigid cylinder extends from the bottom to the8

water surface. The non-dimensional maximum deviation of the cylinder cross section from9

a circular one plays the role of a small parameter of the problem. A fifth-order asymptotic10

solution of the problem is obtained. The problems at each order are solved by the Fourier11

method. It is shown that the first-order velocity potential is a linear function of the Fourier12

coefficients of the shape function of the cylinder, the second-order velocity potential is a13

quadratic function of these coefficients, and so on. The hydrodynamic forces acting on the14

cylinder and the water surface elevations on the cylinder are presented. The comparisons15

of the present asymptotic results with numerical and experimental results of previous in-16

vestigations show good agreement. Long wave approximation of the hydrodynamic forces is17

derived and used for validation of the asymptotic solutions. The obtained values of the forces18

are exact in the limit of zero wave numbers within the linear wave theory. An advantage of19

the present approach compared with the numerical solution of the problem by an integral20

equation method is that it provides the forces and the diffracted wave field in terms of the21

coefficients of the Fourier series of the deviation of the cylinder shape from the circular one.22

The resulting asymptotic formula can be used for optimization of the cylinder shape in terms23

of the wave loads and diffracted wave fields.24

25

Keywords: Linear water waves, non-circular vertical cylinder, asymptotic analysis, wave26

loads.27

INTRODUCTION28

Prediction of wave forces is important to engineers for the design of offshore and coastal29

structures. Floating airports, bridge pylons, semi submersibles, Tension Leg platforms are30

typical examples of such structures. For large scale structures, one should take the diffraction31

effects into account. The potential wave theory is usually used to estimate the wave loads.32

The wave body interaction is a three dimensional and nonlinear problem with unknown33

in advance position of the free surface of the liquid and unknown wetted surface of the34
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body. The problem can be linearized for waves of small amplitude compared with the water35

depth, wave length, and linear size of the body. Within the linear theory of water waves36

we linearize the free surface boundary conditions and impose them on the equilibrium level37

of water surface. Viscous effects and surface tension of the liquid are important for short38

water waves with relatively high frequency. For large dimensions of offshore structures and39

moderate wave length, both viscous and capillary effects can be neglected at leading order.40

The resulting linear problem of wave theory is additionally simplified if the water depth is41

constant and the structure is a vertical cylinder extending from the flat sea bottom to the42

free surface. Such cylinders represent legs of offshore platforms and piles of offshore wind43

turbines. Offshore platforms are used for exploration of oil and gas from under seabed and44

processing. A general offshore structure has a deck which is supported by deck legs. The45

hydrodynamic forces acting on these legs are of major concern to engineers because the46

design of the legs is dominated by wave loads. In many applications, the cylinders are of47

circular cross sections but not necessarily.48

One of the first studies of diffraction of plane water waves by stationary obstacles with49

vertical sides was done by Havelock (1940) for water of infinite depth. Results were obtained50

for cylinders of circular and parabolic sections. Cylinders of ship forms were also studied by51

Havelock using some approximations with applications to a ship advancing in waves. The52

draught of the ship was assumed infinite. Havelock (1940) noticed that for periodic linear53

water waves and obstacles with vertical sides both time and the vertical coordinate can be54

separated from the problem and the original problem of water waves can be reduced to the55

two-dimensional problem of plane sound waves diffracted by the two-dimensional rigid body56

representing the cross section of the vertical cylinder. Then known results from diffraction57

problems of sound and electromagnetic waves can be transferred and applied to the problem58

of water waves diffracted by a vertical cylinder. MacCamy and Fuchs (1954) extended this59

approach to water of finite constant depth and a surface piercing vertical circular cylinder.60

Chen and Mei (1971) solved the water wave diffraction problem for vertical elliptic cylin-61

der. The elliptic cylindrical coordinates and the method of separating variables were used62

to find the velocity potential in terms of infinite series of Mathieu functions. In another63

study, Chen and Mei (1973) investigated the same problem using long wave approximation.64

Numerical results were also presented for a shiplike body. Williams (1985) used two different65

methods to solve the diffraction problem for elliptic vertical cylinders. One method employed66

the two-terms asymptotic expansions of the exact solution for the forces and moments acting67

on the elliptic cylinder with small eccentricity. The second method is the integral equation68

method. It was concluded that the asymptotic method gives good results for small wave69

numbers. In a very recent study by Liu et al. (2016), wave diffraction by a uniform bottom70

mounted cylinder of arbitrary cross section was numerically studied. The velocity potential71

was sought in the form suggested by MacCamy and Fuchs (1954) for a circular cylinder.72

However now the coefficients in the Fourier series for diffracted waves were determined by73

using the body boundary condition for the non-circular cylinder. In this numerical method,74

the body boundary condition was satisfied approximately by the Galerkin method. Fourier75

series were used to represent the cross sections of the cylinders and the free surface eleva-76

tion. As a practical application of this numerical method, the wave forces and wave runup77

on quasi-elliptic caisson foundations of a cross-strait bridge pylon were investigated. These78

numerical results are used in the present paper for validation of our asymptotic solutions.79
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There are two main approaches to the numerical treatment of the diffraction problem of80

cylinders with arbitrary cross section. One of them is the integral equation method devel-81

oped by Hwang and Tuck (1970) in the investigation of harbor resonance. Isaacson (1978)82

applied this method to calculations of wave forces on cylinders used in offshore structures.83

The method is based on source or source-dipole distribution and Green’s theorem. The re-84

sulting Fredholm integral equation of the second kind for the velocity potential is solved by85

discretizing the cylinder contour into small segments. This method was also used by Mansour86

et al. (2002) and Wu and Price (1991). Wu and Price (1991) calculated wave drift forces act-87

ing on multiple vertical cylinders of arbitrary cross sections. The boundary element method88

was developed by Au and Brebbia (1983) for the diffraction problem of vertical cylinders.89

This method is based on the Galerkin weighted residual formulation. After obtaining the90

integral equation, the boundary of the cylinder is discretized into boundary elements which91

are chosen to be either constant or linear or quadratic. The boundary element method was92

applied to the cylinders of circular, elliptic and square cross sections. Au and Brebbia (1983)93

obtained the wave forces acting on a square cylinder and compared their results with the ex-94

perimental and numerical results of Mogridge and Jamieson (1976). The agreement between95

the numerical, experimental and theoretical predictions of the hydrodynamic forces acting96

on the square cylinder was shown to be fairly good. Approximation of ”equivalent circular97

radius” was used by Mogridge and Jamieson (1976). In this approximation, the horizontal98

hydrodynamic force acting on a vertical cylinder is approximated by the force acting on the99

circular cylinder of the same area of its cross section. The boundary element method of100

Au and Brebbia (1983) was used by Zhu and Moule (1994) in the problem of short crested101

wave interaction with vertical cylinders of arbitrary cross section. The boundary element102

method for the diffraction problem of vertical and horizontal cylinders is explained in detail103

by Wrobel et al. (1985).104

The numerical methods such as the integral equation method and the boundary element105

method could be used to solve the diffraction problem for vertical cylinders of arbitrary106

section. However, in some cases these numerical methods are not preferable, for example in107

evaluating free surface integrals in the second order diffraction problem of vertical cylinders108

(see Eatock Taylor and Hung (1987)). The free surface integral converges slowly and the109

values of the first order potential have to be evaluated many times, which is not possible110

by the integral equation methods. Also the integral equation methods require quite fine111

discretization of the boundary of the cylinder, which could be tedious and is the source of112

errors. The method of the present paper, which was originally proposed by Mei et al. (2005),113

can deal with geometries of arbitrary cross section with little effort.114

In this paper, the linear water waves scattering by a vertical cylinder with arbitrary cross115

section extending from the sea bottom to the free surface in water of finite depth are studied116

by asymptotic methods. The non-dimensional maximum deviation of the cylinder cross117

section from a circular one plays the role of a small parameter of the problem. A fifth-order118

asymptotic solution of the problem is obtained. Numerical calculations of the diffracted119

velocity potential, the forces acting on the cylinder and the diffracted wave field are reduced120

to operations with the Fourier coefficients of the shape function, which describes the cross121

section of the cylinder, and the velocity potentials on the cylinder surface at each order of122

approximation. It is shown that the first-order velocity potential is a linear function of the123

Fourier coefficients of the shape function of the cylinder, the second-order velocity potential is124

3



a quadratic function of these coefficients, and so on. The obtained solution makes it possible125

to formulate and solve two practical problems in terms of the Fourier coefficients of the shape126

function: optimization of the shape of the cylinder and identification of the cylinder shape127

by using measured wave field far from the cylinder. The asymptotic approach of this paper128

is applied to calculations of the hydrodynamic forces acting on elliptic, quasi-elliptic, and129

square cylinders. The comparisons of the asymptotic forces with available numerical and130

experimental results by others demonstrate good accuracy of the present approach. Long-131

wave approximation of the hydrodynamic forces is obtained and used for validation of the132

asymptotic solution.133

Note that Mei et al. (2005) were concerned with the leading order corrections to the134

forces caused by small deviation of a vertical elliptic cylinder from the circular one. A135

similar perturbation approach was used by Mansour et al. (2002) for vertical cylinders with136

a cosine type radial perturbation of the cylinder cross section. The leading order corrections137

to the forces were obtained and compared to the numerical results by the integral equation138

method. It was shown that the agreement is good for small perturbation amplitude. In139

contrast to the perturbation analysis by Mansour et al. (2002), our asymptotic approach140

is not restricted to a particular shape of cylinders and a fifth-order approximation of the141

solution is obtained. It will be shown in this paper that the fifth-order asymptotic solution142

makes it possible to consider even such ”non-circular” cylinders as square ones and obtain143

accurate results in terms of the hydrodynamic forces.144

The present asymptotic approach can be extended to truncated vertical cylinders and145

oscillating rigid and elastic cylinders of arbitrary cross sections, as well as to submerged146

horizontal cylinders in plane incident waves. The diffraction problem of a truncated vertical147

cylinder of circular cross section of radius a was solved by Garrett (1971). In his paper, both148

the incident and diffracted waves were expanded in Bessel functions in the interior region149

(r < a) and in the exterior region (r > a) and then these two solutions and the derivatives of150

the solutions were matched at the boundary (r = a). Black et al. (1971) used a variational151

formulation and a theorem due to Haskind to calculate wave forces on a stationary body152

using only far field properties. Yeung (1981) used the same method to solve the radiation153

problem for a truncated vertical cylinder of circular cross section. In the case of deep water,154

the multipole expansions are usually convenient to describe the velocity potential for wave155

diffraction and radiation. Ursell (1950) used a series of complex potential functions arising156

from multipoles at the center of the cylinder to solve the problem of the generation of surface157

waves by a submerged circular cylinder. Thorne (1953) investigated the motion arising from158

line and point singularities using multipole expansion method in deep and shallow waters.159

Two-dimensional multipoles were developed in a systematic way for submerged and floating160

cylinders by Eatock Taylor and Hu (1991). The application to arbitrary body shapes was161

made by coupling the multipole expansion with a boundary integral method.162

The outline of the paper is as follows: mathematical formulation of the problem and163

its solution for a vertical circular cylinder are given in the next section. The fifth-order164

asymptotic solution of the problem is described in section ”Vertical Cylinders With Nearly165

Circular Cross Section”. Each approximation of this asymptotic solution is obtained by166

operating with the Fourier coefficients of the shape function and the velocity potentials of167

the lower order approximations. The asymptotic approach is applied to elliptic cylinders168

in waves and the obtained results are compared with numerical results of Williams (1985)169

4



in section ”Hydrodynamic Force on Elliptic Vertical Cylinder”. In the next section, the170

present approach is applied to square cylinders and the obtained results are compared with171

experimental results by Mogridge and Jamieson (1976) in terms of the horizontal forces acting172

on square cylinders. In section ”Hydrodynamic Force on Quasi-Elliptic Vertical Cylinder” the173

results of the present asymptotic method are compared with the three-dimensional solution174

of the Navier-Stokes equations by Wang et al. (2011). The wave force and runup values175

for cylinders with circular, elliptic, quasi-elliptic and square cross sections with the same176

cross sectional area are compared. In the next section, the wave force and wave runup on177

cylinders with cosine type perturbations of their cross sections are studied and compared178

with the numerical results by Mansour et al. (2002) and Liu et al. (2016). Asymptotic179

behavior of wave forces for long waves is studied in section ”Long Wave Approximation of180

Wave Forces” for cylinders with arbitrary cross sections. The findings of the analysis are181

summarized and conclusions are drawn in the last section of this paper.182

FORMULATION OF THE PROBLEM183

Diffraction of two-dimensional water waves by a vertical cylinder of almost circular cross184

section is studied within the linear wave theory. The problem is formulated in a polar co-185

ordinate system (r, θ, z) where the z axis points vertically upwards. The plane z = −h186

corresponds to the sea bottom and the plane z = 0 corresponds to the mean level of water187

surface. The rigid cylinder extends from the sea bottom to the free surface. The cross

Incident wave

α

D

∂D

n

x

y

FIG. 1: Top view of the problem configuration.

188

section of the vertical cylinder is described by the equation r = R[1 + εf(θ)], where R is189

the mean radius of the cylinder and ε is a small non-dimensional parameter of the problem.190

The top view of the studied configuration is shown in Figure 1. The smooth and bounded191

function f(θ) describes the deviation of the shape of the cylinder from the circular one. A192

one-dimensional incident wave of amplitude A and wave frequency ω propagates at angle α193

to the positive x-axis from x ∼ −∞ towards the cylinder. Within the linear wave theory194

(see Mei et al. (2005)), the wave field is described by a velocity potential Φ(r, θ, z, t). For a195

vertical cylinder of arbitrary cross section the velocity potential is expressed only through196

the propagating wave mode,197

Φ(r, θ, z, t) = Re

{
gA

ω

cosh[k(z + h)]

cosh(kh)
φ(r, θ)e−iωt

}
, (1)198

where i =
√
−1 and Re{A } denotes the real part of a complex number A . The complex-199
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valued function φ(r, θ) satisfies the Helmholtz equation,200

φrr +
1

r
φr +

1

r2
φθθ + k2φ = 0 (r > R[1 + εf(θ)]), (2)201

in the flow region, the far-field condition,202

φ ∼ eikr cos(θ−α) (r →∞), (3)203

and the boundary condition on the surface of the cylinder,204

∂φ

∂n
= 0 (r = R[1 + εf(θ)]). (4)205

Here n is the unit outward normal vector to the surface of the cylinder, g is the gravitational206

acceleration, k is the wave number, k = 2π/λ, λ is the length of the incident wave. The wave207

number k is related to the wave frequency ω by the dispersion relation ω2 = gk tanh(kh),208

k > 0.209

The hydrodynamic force F(t) = (Fx,Fy), acting on the vertical cylinder is obtained by210

integration of the dynamic pressure, p(r, θ, z, t) = −ρ ∂Φ/∂t, over the wetted part of the211

cylinder212

F(t) = −
∫ 0

−h

∫
∂D

pn ds dz = −ρgAtanh (kh)

k
Re

{
i

∫
∂D

φ(r, θ)n ds e−iωt
}
, (5)213

where ∂D is the boundary of the cylinder cross section, r = R[1 + εf(θ)], and ds is a small214

element of this boundary. The non-dimensional force scaled with ρgAπa2 tanh(kh) is denoted215

by tilde. Here a is a characteristic dimension of the vertical cylinder cross section, which can216

be different from R. The components of the non-dimensional force are given by217

F̃x(t) = Re{F̃x e−iωt}, F̃y(t) = Re{F̃y e−iωt}, (6)218

F̃x =
−iR
πka2

∫ 2π

0

φ(R[1 + εf(θ)], θ)[εf ′(θ) sin θ + [1 + εf(θ)] cos θ] dθ, (7)219

F̃y =
−iR
πka2

∫ 2π

0

φ(R[1 + εf(θ)], θ)[−εf ′(θ) cos θ + [1 + εf(θ)] sin θ] dθ. (8)220

Note that the phases of F̃x and F̃y depend on the position of the origin O of the coordinate221

system, see Figure 1, but the modulus |F̃x| and |F̃y| are independent of the coordinate system.222

The elevation of the free surface, z = η(r, θ, t), is related to the unknown potential φ(r, θ)223

by the linear kinematic boundary condition, ηt = Φz(r, θ, 0, t), which gives224

η(r, θ, t) = Re{iAφ(r, θ) e−iωt}. (9)225

The far-field condition (3) and equation (9) provide the assumed shape of the incident wave226

ηI(r, θ, t):227

ηI(r, θ, t) = A sin(ωt− kr cos(θ − α)), (10)228
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with ηI(0, θ, t) = A sin(ωt) at the origin of the coordinate system.229

The maximum elevation of the water surface at the cylinder per the wave period is known230

as the wave runup, 4(θ). The wave runup is scaled in this paper with the wave height, 2A.231

Equation (9) yields 4(θ)/2A = |φ(r, θ)|/2, where r = R[1 + εf(θ)]. The wave runup and its232

dependence on the shape of the cylinder are important in design of offshore structures, where233

the wave runup should not exceed the elevation of the wetdeck of an offshore structure above234

the mean water level. Wave runup on offshore structures could be much higher than that235

predicted by the linear wave theory, see De Vos et al. (2007), Lykke Andersen et al. (2011).236

Nonlinear waves with steep front or breaking in front of the structure produce thin runup237

sheet and spray near the structure increasing the runup. The runup can be also affected by238

aeration of water near the structure due to the wave breaking, in particular. Many nonlinear239

physical effects near the structure are not included in the present linear model. However, it240

can be shown that these effects provide small contributions to the hydrodynamic structure241

(Iafrati and Korobkin (2006), Korobkin and Malenica (2007), Korobkin (2008)) and the242

diffracted wave field.243

The problem (2)-(4) for arbitrary vertical cylinder can be solved only numerically. The244

analytical solution is well known for the circular cylinder, r = R, see MacCamy and Fuchs245

(1954). This solution corresponds in this study to the leading-order velocity potential of the246

problem (2)-(4) as ε→ 0,247

φ0(r, θ) =
∞∑
m=0

εmi
m
[
Jm(kr)− J ′m(kR)

H
(1)′
m (kR)

H(1)
m (kr)

]
cos[m(θ − α)], (11)248

where εm is the Neumann symbol, ε0 = 1, εm = 2 for m ≥ 1, Jm(r) are the Bessel functions of249

the first kind with order m, H
(1)
m (r) are the Hankel functions of the first kind corresponding250

to outward-propagating cylindrical waves, prime stands for derivatives with respect to the251

argument. By using the Wronskian identity, Jm(r)H
(1)
m

′
(r) − J ′m(r)H

(1)
m (r) = 2i/(πr), the252

potential φ0(r, θ) on the surface of the cylinder is given by253

φ0(R, θ) =
2i

πkR

∞∑
m=0

εmi
m

H
(1)
m

′
(kR)

cos[m(θ − α)]. (12)254

Here255

2i

π kRH
(1)
m

′
(kR)

∼
√

2

πm
e−m log( 2m

ekR
) (13)256

as m → ∞. Therefore, the series (12) converges exponentially and only a few terms are257

needed to calculate the potential φ0(R, θ) and its derivatives in θ with good accuracy.258

Equations (12) and (7) provide the total non-dimensional hydrodynamic force acting on259

the circular cylinder in the incident regular wave with α = 0◦ and a = R (see Mei et al.260

(2005))261

F̃x =
4i

π(kR)2H
(1)′

1 (kR)
. (14)262

We shall determine the force formula similar to (14) for ε > 0 and a given function f(θ)263

describing the cross section of a non-circular vertical cylinder.264
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VERTICAL CYLINDERS WITH NEARLY CIRCULAR CROSS SECTIONS265

Asymptotic methods are used to find an approximate solution of the problem (2)-(4) as266

ε → 0. The derivatives ∂φ/∂θ and ∂φ/∂r in the boundary condition (4) on the surface of267

the cylinder,268

∂φ

∂r
(R[1 + εf(θ)], θ)− εf ′(θ)

R[1 + εf(θ)]2
∂φ

∂θ
(R[1 + εf(θ)], θ) = 0,269

are approximated by their Taylor series up to O(ε5) at r = R and then the fifth order270

asymptotic expansion of the potential φ(r, θ),271

φ(r, θ) = φ0(r, θ) + εφ1(r, θ) + ε2φ2(r, θ) + ε3φ3(r, θ) + ε4φ4(r, θ) +O(ε5), (15)272

is substituted in the boundary condition. The resulting approximation of the condition (4)273

is274

φ0,r + ε
[
φ1,r +Rf(θ)φ0,rr −

f ′(θ)

R
φ0,θ

]
275

+ ε2
[
φ2,r +Rf(θ)φ1,rr −

f ′(θ)

R
φ1,θ +

R2f 2(θ)

2
φ0,rrr +

2f(θ)f ′(θ)

R
φ0,θ − f(θ)f ′(θ)φ0,rθ

]
276

+ ε3
[
φ3,r +Rf(θ)φ2,rr −

f ′(θ)

R
φ2,θ +

R2f 2(θ)

2
φ1,rrr +

2f(θ)f ′(θ)

R
φ1,θ − f(θ)f ′(θ)φ1,rθ277

+2f 2(θ)f ′(θ)φ0,rθ +
R3f 3(θ)

6
φ0,rrrr −

3f 2(θ)f ′(θ)

R
φ0,θ −

Rf 2(θ)f ′(θ)

2
φ0,rrθ

]
278

+ ε4
[
φ4,r +Rf(θ)φ3,rr −

f ′(θ)

R
φ3,θ +

R2f 2(θ)

2
φ2,rrr − f(θ)f ′(θ)φ2,rθ +

2f(θ)f ′(θ)

R
φ2,θ279

−3f 2(θ)f ′(θ)

R
φ1,θ −

Rf 2(θ)f ′(θ)

2
φ1,rrθ + 2f 2(θ)f ′(θ)φ1,rθ +

R3f 3(θ)

6
φ1,rrrr280

−3f 3(θ)f ′(θ)φ0,rθ +Rf 3(θ)f ′(θ)φ0,rrθ −
R2f 3(θ)f ′(θ)

6
φ0,rrrθ +

R4f 4(θ)

24
φ0,rrrrr281

+
4f 3(θ)f ′(θ)

R
φ0,θ

]
= O(ε5), (16)282

where the functions φn(r, θ) and their derivatives are calculated at r = R. At the leading283

order as ε→ 0, condition (16) provides φ0,r(R, θ) = 0. This is the boundary condition which284

leads to the solution (11) for the circular cylinder. At the first order, condition (16) gives285

φ1,r(R, θ) =
f ′(θ)

R
φ0,θ(R, θ)−Rf(θ)φ0,rr(R, θ). (17)286

The unknown potentials φn(r, θ), n = 0, 1, 2, 3, 4, in (15) satisfy equation (2). This equation287

is used, in particular, to calculate the second derivative φ0,rr and to write (17) in terms of288

φ0(R, θ) given by (12) and its derivatives in θ:289

φ1,r(R, θ) =
1

R
f(θ)φ0,θθ +

1

R
f ′(θ)φ0,θ +Rk2f(θ)φ0(R, θ). (18)290

Note that the wave number k now appears in the boundary condition for the potential291

φ1(r, θ).292
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Equating the terms in (16) with ε2, ε3 and ε4 to zero, the boundary conditions for the293

potentials φ2, φ3 and φ4 are obtained respectively. These boundary conditions have the form294

(n = 1, 2, 3, 4)295

φn,r(R, θ) = Gn(θ), (19)296

where Gn(θ) are the sums of the products of the functions f(θ), f ′(θ), φ0(R, θ),. . . , φn−1(R, θ)297

and derivatives of the potentials φ0(R, θ),. . . , φn−1(R, θ) in θ. Starting from the solution (12)298

for the circular cylinder and a given function f(θ), we calculate the right-hand side, G1(θ),299

in (18) and then determine the outward-propagating wave solution, φ1(r, θ), of equation (2)300

subject to the boundary condition (18) on the circular cylinder, r = R. By using the obtained301

potential φ1(r, θ), we calculate G2(θ) and determine φ2(r, θ), and so on. The boundary value302

problems for the potentials φn(r, θ) are identical and differ only by functions Gn(θ) in the303

body boundary condition (19). By using the Fourier series of the functions Gn(θ),304

Gn(θ) =
1

2
G

(c)
n0 +

∞∑
m=1

G(c)
nm cos(mθ) +G(s)

nm sin(mθ), (20)305

the potentials are given by306

φn(r, θ) =
1

2
G

(c)
n0

H
(1)
0 (kr)

kH
(1)
0

′
(kR)

+
∞∑
m=1

[G(c)
nm cos(mθ) +G(s)

nm sin(mθ)]
H

(1)
m (kr)

kH
(1)
m

′
(kR)

. (21)307

In particular, φn(R, θ) and their derivatives are obtained in the form of their Fourier series.308

Calculations of the functions Gn(θ) and their Fourier coefficients are reduced to multiplica-309

tion and summation of Fourier series. If the coefficients in the Fourier series of the function310

f(θ) are known,311

f(θ) ∼ f
(c)
0

2
+
∞∑
m=1

f (c)
m cos(mθ) + f (s)

m sin(mθ), (22)312

and using the Fourier series (12) of φ0(R, θ), we calculate the derivatives f ′(θ), φ0,θ(R, θ),313

φ0,θθ(R, θ) by differentiating (12) and (22) term by term and then we can determine the314

Fourier coefficients of the right-hand side in (18). Finally the solution φ1(r, θ) is given by315

(21). Similar arguments are applied to the higher-order problems for φ2, φ3 and φ4. It is316

seen that the asymptotic solution (15) of the problem is obtained by operating with the317

Fourier coefficients of the potentials φn(R, θ) and the function f(θ) which describe the shape318

of the vertical cylinder. Summation and differentiation of Fourier series are straightforward319

operations. The multiplication of two Fourier series,320

g(θ) ∼ a0
2

+
∞∑
m=1

am cos(mθ) + bm sin(mθ),321

h(θ) ∼ α0

2
+
∞∑
m=1

αm cos(mθ) + βm sin(mθ),322
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provides the Fourier series323

g(θ)h(θ) ∼ A0

2
+
∞∑
m=1

Am cos(mθ) +Bm sin(mθ), (23)324

where (see Fichtenholtz (2001))325

An =
a0αn

2
+

1

2

∞∑
m=1

[am(αm+n + αm−n) + bm(βm+n + βm−n)], (24)326

Bn =
a0βn

2
+

1

2

∞∑
m=1

[am(βm+n − βm−n)− bm(αm+n − αm−n)], (25)327

βm−n = −βn−m and αm−n = αn−m if m− n < 0.328

Calculations of the components F̃x and F̃y of the hydrodynamic force acting on the verti-329

cal cylinder and the diffracted waves far from the cylinder can also be reduced to operations330

with the Fourier coefficients of the function f(θ) and the potentials φn(R, θ). For example,331

the integrand of F̃x in (7) can be approximated as332

φ(R[1 + εf(θ)], θ)[εf ′(θ) sin θ + [1 + εf(θ)] cos θ] =
4∑

n=0

εnSn(θ) +O(ε5),333

where334

Sn(θ) =
1

2
S
(c)
n0 +

∞∑
m=1

[S(c)
nm cos(mθ) + S(s)

nm sin(mθ)].335

The non-dimensional x-component of the force is given by336

F̃x = − iR

ka2

(
S
(c)
00 + εS

(c)
10 + ε2S

(c)
20 + ε3S

(c)
30 + ε4S

(c)
40

)
+O(ε5). (26)337

Here S
(c)
00 provides the force acting on the circular cylinder, r = R, S

(c)
10 is a linear function338

of the Fourier coefficients f
(c)
m and f

(s)
m in (22), and S

(c)
20 is a quadratic function of these339

coefficients. A similar analysis is applied to calculations of the y-component of the force, F̃y.340

Far from the cylinder, r � R, equation (21) provides341

φn(r, θ) ∼ φ̃n(θ)
eikr√
r
,342

343

φ̃n(θ) =

√
2

πk
e−i

π
4

(
1

2

G
(c)
n0

kH
(1)
0

′
(kR)

+
∞∑
m=1

[G(c)
nm cos(mθ) +G(s)

nm sin(mθ)]
(−i)m

kH
(1)
m

′
(kR)

)
. (27)344

The functions φ̃n(θ), n ≥ 1, depend on the Fourier coefficients f
(c)
m , f

(s)
m , m ≥ 0, of the345

function f(θ). This dependence is linear for φ̃1(θ) and quadratic for φ̃2(θ). The obtained346

asymptotic formula for the diffracted wave field can be used to determine the shape of a347

vertical cylinder by using the wave measurements far from it.348
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Let us assume that we know the incident wave and the diffracted wave field (elevation of349

the water surface) far from a cylinder. Let us assume that the cylinder is vertical but we do350

not know the shape of its cross section and the position of the cylinder. By analyzing the351

measured diffracted wave field and the derived first order approximation of the potential352

φ(r, θ) ∼ [φ̃0(θ) + εφ̃1(θ)]
eikr√
r

(r →∞), (28)353

we can estimate the radius of the cylinder R, position of its center, the scale of its surface354

perturbation ε, and the Fourier coefficients f
(c)
m and f

(s)
m of the deviation, f(θ), of the cylin-355

der cross section from the circular one. This problem of the cylinder identification is not356

considered in this paper. The algorithm of this study relates the function φ̃1(θ) and the357

shape function f(θ), which is crucial for efficient solution of the identification problem.358

In some problems, the shape function can also depend on the small parameter ε, r =359

R[1 + εf(θ, ε)], and can be approximated as360

f(θ, ε) = f0(θ) + εf1(θ) + ε2f2(θ) + ε3f3(θ) + ε4f4(θ) +O(ε5). (29)361

The asymptotic expansion (29), where each function fn(θ) is presented by its Fourier series,362

is substituted in (16) and we again arrive at the boundary conditions in the form (19) but363

with different functions Gn(θ). In particular, f(θ) is changed to f0(θ) in (18). The expansion364

(29) will be used in the next section to find approximate solution of the problem for an elliptic365

cylinder of a small eccentricity.366

HYDRODYNAMIC FORCE ON ELLIPTIC VERTICAL CYLINDER367

To validate the algorithm of the present paper, which is based on the asymptotic for-368

mula and operations with the Fourier coefficients, the algorithm is applied to the problem369

of elliptic vertical cylinders. This problem has been solved by Chen and Mei (1971) by370

series of the Mathieu functions and elliptic coordinates, and by Williams (1985) using the371

method of integral equation on the boundary of the cylinder. Williams (1985) also used the372

asymptotic behaviors of the Mathieu functions to derive asymptotic formula for the total373

force components when the eccentricity of the elliptic section is small.374

In this section, the vertical cylinder with elliptic cross section of small eccentricity e =375 √
1− b2/a2, where a is the semi-major axis and b is the semi-minor axis of the elliptic cross376

section is considered. The equation of the ellipse in the polar coordinates r, θ with the origin377

at the focus of the ellipse reads378

r =
a(1− e2)
1− e cos θ

. (30)379

Taking the eccentricity e as a small parameter of the problem, ε = e, and calculating the380

Fourier coefficients of the right-hand side in (30), we obtain381

r = a
√

1− ε2 + 2a
√

1− ε2
∞∑
n=1

[
ε

1 +
√

1− ε2

]n
cos(nθ)382

= a+ εa cos θ + ε2a
(
−1+cos(2θ)

2

)
+ ε3a

(
− cos θ+cos(3θ)

4

)
+ ε4a

(
−1+cos(4θ)

8

)
+O(ε5). (31)383
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Comparing (31) with the equation of the cylinder in the present analysis, r = R[1+εf(θ, ε)],384

and expansion (29), we find385

R = a, f0(θ) = cos θ, f1(θ) = −1

2
+

1

2
cos(2θ),386

f2(θ) = −1

4
cos θ +

1

4
cos(3θ), f3(θ) = −1

8
+

1

8
cos(4θ).387

The non-dimensional force components F̃x and F̃y are calculated by the present algorithm388

using equation (26), equation (12) for the potential φ0(R, θ) on the cylinder at leading order389

and equations (21) for the higher order potentials φn(R, θ), where n = 1, 2, 3, 4. The modulus390

of the force components |F̃x| and |F̃y| are calculated by the fifth-order approximation (15)391

and also by the third-order approximation keeping only three terms in (15). The forces are392

calculated for 0 < ka < 4 and the eccentricity e = 1/2. The obtained forces are compared393

with the results by Williams (1985) in Figures 2(a) and 2(b).394
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FIG. 2: The x and y-components of the non-dimensional force acting on elliptic cylinder for
e = 0.5, α = 0◦ in (a) and α = 90◦ in (b). The solution by Williams (1985) is shown by solid
line, and the present asymptotic solutions are shown by markers: � is for the third-order
and 4 is for the fifth-order asymptotic solutions.

It was found for this range of ka that the five terms in (12) and (21) provide accurate re-395

sults. At the end of each operation with the Fourier series, the resulting series was truncated396

to five terms with cosines and five terms with sines. Note that the forces were computed by397

Williams (1985) by two different methods depending on the value of the product ka. For398

large ka the forces were computed by the boundary element method, and for small ka the399

solution was found in the series form involving Mathieu functions. In the boundary element400

method, the elliptic contour was divided into 120 elements. Due to problems with conver-401

gence of the series of the Mathieu functions, Williams (1985) used the asymptotic formula of402

these functions for small eccentricity e and obtained fifth-order approximations of the force403

components up to O(e5) terms. The formula for the coefficients in the asymptotic formula404

by Williams (1985) are collected in four-page appendix at the end of his paper. The ap-405

proach of the present paper is more straightforward and provides the approximations of the406

12



force components of the same order as by Williams (1985) for small eccentricity. The Math-407

ieu functions in the infinite series solution depend on the parameter q = (kae)2/4. Williams408

(1985) suggested to use his asymptotic formula for q 6 0.4 and the boundary element method409

for q > 0.4. This implies that, in Figures 2(a) and 2(b), the solid lines representing the forces410

by Williams (1985) for e = 1/2 were computed by his asymptotic formula for 0 < ka < 2.5.411

The Figures 2(a) and 2(b) show that our asymptotic fifth-order solutions is very close to412

the forces computed by Williams (1985). The present asymptotic solution in the long-wave413

approximation, ka→ 0, provides414

F̃x(t) =
[
2− 3

2
ε2 − 1

8
ε4 +O(ε6)

]
cos(ωt), (32)415

for α = 0◦ and416

F̃y(t) =
[
2− 1

2
ε2 − 1

8
ε4 +O(ε6)

]
cos(ωt), (33)417

for α = 90◦. The asymptotic formula (32) and (33) coincide with those derived by Williams418

(1985).419

HYDRODYNAMIC FORCE ON SQUARE VERTICAL CYLINDER420

Let equation r = aF (θ) describe the square, x = ±a, −a < y < a and y = ±a, −a <421

x < a, in the polar coordinates, x = r cos θ and y = r sin θ. We shall determine the Fourier422

coefficients of the function F (θ), 0 6 θ 6 2π, and then convert the corresponding Fourier423

series into the form r = R[1 + εf(θ)] identifying values of R, ε and the function f(θ). Then424

the approach of the section ”Vertical Cylinders with Nearly Circular Cross Sections” will425

give the components of the total hydrodynamic force acting on the square cylinder.426

A square has four lines of symmetry, F (−θ) = F (θ), F
(π

2
− θ
)

= F
(π

2
+ θ
)
, F

(π
4
− θ
)

=427

F
(π

4
+ θ
)
. The Fourier series of the function F (θ) contains only cos(4mθ), m > 0;428

F (θ) =
1

2
F0 +

∞∑
m=1

Fm cos(4mθ),429

Fm =
8

π

∫ π/4

0

F (θ) cos(4mθ) dθ =
8

π

∫ π/4

0

cos(4mθ)

cos θ
dθ,430

where F0 =
8

π
log(1 +

√
2) and Fm =

16

π

√
2(−1)m/[(4m − 1)(4m − 3)] + Fm−1, m > 1.431

Therefore432

R = aF0/2 ≈ 1.1222a.433

The maximum value of F (θ) is
√

2, which gives ε = 2
√

2/F0 − 1 ≈ 0.26 and |f(θ)| 6 1,434

where435

f(θ) =
∞∑
m=1

fm cos(4mθ), fm = 2Fm/(εF0), (34)436

f1 = −0.5357, f2 = 0.1689, f3 = −0.0801, f4 = 0.0463, f5 = −0.03. The shapes given437

by the equation r = R[1 + εf(θ)] with three terms (dashed line) and ten terms (solid line)438
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FIG. 3: The approximation of the square by the equation r = R[1 + εf(θ)] in the polar
coordinates with three (dashed line) and ten (solid line) terms retained in the series (34).

retained in the series (34) are shown in Figure 3. It is seen that the approximation of the439

square cross section with only three terms in the series (34) is reasonably good.440

Hydrodynamic forces acting on a square caisson have been studied by Mogridge and441

Jamieson (1976). They performed experiments with a 30.48cm × 30.48cm (12in × 12in)442

square box in the wave flume 3.65m (12ft) wide, 1.37m (4.5ft) deep and 49.3m (162ft) long.443

The hydrodynamic forces for α = 0◦ were measured and compared with the predictions by444

the theory of ”equivalent circular radius”. In this theory of equivalent circular radius, the445

horizontal hydrodynamic force on a vertical cylinder with the area of its cross section |D| is446

approximated by the force acting on the circular cylinder of radius Re, where the area of the447

circular cross section, πRe
2, is equal to the area |D|. For the square shape vertical cylinder448

with |D| = (2a)2, we obtain Re = 2a/
√
π ≈ 1.1283a. It is seen that the ”equivalent radius”449

Re is very close to the radius R ≈ 1.1222a calculated above by using the Fourier series.450

The computed hydrodynamic forces acting on the square vertical cylinder with α = 0◦451

are shown in Figure 4. The fifth-order approximation (15) was used. Note that ε5 < 0.0012.452

Representing the square with four terms in (34) and truncating the Fourier series of the453

potentials φn, n = 0, 1, 2, 3, 4, in (21) to sixteen terms, the force shown by the dashed line454

is obtained. The computed force is very close to the experimental results by Mogridge and455

Jamieson (1976) which are shown by markers. Keeping just one term in (34) and four terms456

in the Fourier series (21), we arrive at the solid line which is very close to the prediction of the457

force with four terms in (34), where 1 6 ka 6 4, but underpredicts the force in the interval458

0 6 ka 6 1. The force predicted by the ”equivalent circular radius” theory of Mogridge and459

Jamieson (1976) is shown by the dotted line in Figure 4. This prediction of the force is very460

close to our asymptotic force with one term in (34), where 0 6 ka < 2. We conclude that461

more terms in (34) provide better approximation of the experimental force for long waves462

but do not improve the prediction of the hydrodynamic force for short waves.463

HYDRODYNAMIC FORCE ON QUASI-ELLIPTIC VERTICAL CYLINDER464

A quasi-ellipse consists of a rectangular part in the center and two semicircular parts at465

the front and back (see Figure 5(a)). In Figure 5(a), D/2 is the radius of the semicircles and466

B is the length of the rectangular part.467
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F x

FIG. 4: The non-dimensional hydrodynamic force acting on the square vertical cylinder in
waves. Comparison of Mogridge and Jamieson theory (dotted line), experimental results (•
markers), the present method with one term in (34) (solid line) and present method with
four terms in (34) (dashed line).

Let equation r = F (θ) describe the quasi-ellipse in Figure 5(a) in the polar coordinates,468

x = r cos θ and y = r sin θ, where469

F (θ) =



B cos θ +
√
D2 −B2 sin2 θ

2
, 0 ≤ θ ≤ arctan

D

B
,

D

2 sin θ
, arctan

D

B
≤ θ ≤ π − arctan

D

B
,

−B cos θ +
√
D2 −B2 sin2 θ

2
, π − arctan

D

B
≤ θ ≤ π + arctan

D

B
,

−D
2 sin θ

, π + arctan
D

B
≤ θ ≤ 2π − arctan

D

B
,

B cos θ +
√
D2 −B2 sin2 θ

2
, 2π − arctan

D

B
≤ θ ≤ 2π.

470

We shall determine the Fourier coefficients of the function F (θ), 0 6 θ 6 2π, and then471

convert the corresponding Fourier series into the form r = R[1 + εf(θ)] identifying values472

of R, ε and the function f(θ). Then the approach of the section ”Vertical Cylinders with473

Nearly Circular Cross Sections” will give the components of the total hydrodynamic force474

acting on the quasi-elliptic cylinder.475

A quasi-ellipse has two lines of symmetry, F (−θ) = F (θ), F
(π

2
− θ
)

= F
(π

2
+ θ
)
.476

Hence, the Fourier series of the function F (θ) contains only cos(2mθ), m > 0;477

F (θ) =
1

2
F0 +

∞∑
m=1

Fm cos(2mθ),478

Fm =
1

π

∫ 2π

0

F (θ) cos(2mθ) dθ =
4

π

∫ π/2

0

F (θ) cos(2mθ) dθ, m = 0, 1, 2, · · · .479
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FIG. 5: (a) Quasi-ellipse. (b) The approximation of the quasi-ellipse by the equation r =
R[1 + εf(θ)] in the polar coordinates with two (dashed line) and eight (dotted line) terms
retained in the series (35) and the exact shape of quasi-ellipse (solid line).

The Fourier coefficients Fm, m = 0, 1, 2, . . ., are evaluated for D = 20 m and B = 12 m.480

These particular values were used by Wang et al. (2011). Then,481

R = F0/2 ≈ 13.1026 m.482

The maximum value of F (θ) is (D+B)/2, which gives ε = (B +D)/F0− 1 ≈ 0.221136 and483

|f(θ)| 6 1, where484

f(θ) =
∞∑
m=1

fm cos(2mθ), fm = 2Fm/(εF0), (35)485

f1 = 3.06712, f2 = −0.145175, f3 = −0.0595601, f4 = 0.050526, f5 = −0.0148836, f6 =486

−0.00652338, f7 = 0.00973661. The shapes given by the equation r = R[1 + εf(θ)] with487

two terms (dashed line) and eight terms (solid line) retained in the series (35) are shown in488

Figure 5(b). It is seen that the approximation to the quasi-elliptic cross section with eight489

terms in the series (35) is reasonably good.490

Wang et al. (2011) developed a three dimensional time domain method to solve the Navier491

Stokes equations including viscosity and nonlinear effects. Wave forces on the quasi-ellipse492

caisson are calculated and compared with the results of Wang et al. (2011) (see Figure 6).493

For comparison purposes, the vertical axis in the Figure 6 is chosen as F ∗x = [πka/4]F̃x,494

a = (B+D)/2 = 0.8D. It is seen from the Figure 6 that there is small discrepancy between495

the present results and the results of Wang et al. (2011), which can be attributed to the496

effect of viscosity and nonlinearity considered in the Navier Stokes formulation of Wang497

et al. (2011). Figure 6 shows that the present approach gives slightly smaller values for wave498

forces compared with the Navier Stokes computations. However, the present model still can499

be used to make a quick study to identify critical wave numbers and directions as input to500

more detailed and computationally more expensive Navier Stokes computations.501

For the incident wave propagating at an angle α to the positive x-axis, the wave force502

and the maximum wave runup are computed and compared for cylinders of circular, elliptic,503

quasi-elliptic and square cross sections, see Figure 7, with the same cross sectional area. The504
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FIG. 6: The non-dimensional hydrodynamic force acting on the quasi-elliptic vertical cylinder
in waves. Wang (H/h = 0.05, � markers), Wang (H/h = 0.095, � markers), Wang (H/h =
0.15, N markers), Wang (H/h = 0.2, 4 markers), the present method with fourteen terms
in (35), (line with ◦ markers). Here H is the wave height, H = 2A, and h is the water depth.

forces and maximum runups for α = 0◦ are compared in Figures 8(a) and 8(b), respectively.505

It is observed from Figure 8(a) that wave force is smallest for the cylinder with quasi-elliptic506

cross section, and from Figure 8(b) that maximum non-dimensional wave runup is highest507

for the square cylinder. For the incident wave propagating at angle α = 90◦ to the positive508

x-axis, see Figure 7, wave forces for elliptic and quasi-elliptic cylinders are higher than for509

α = 0◦. This can be attributed to the larger projected area normal to the flow of these510

cylinders for α = 90◦. The computations for α = 90◦ provide that the wave force is highest511

for the cylinder with quasi-elliptic cross section and the maximum non-dimensional wave512

runup is highest for quasi-elliptic cylinder, where 0 < ka < 1.1, and for square cylinder,513

where 1.1 < ka < 4. Figures for the latter case is not included. It is concluded that the514

forces are dependent on angle of wave incidence, α, with the corresponding corrections of515

order O(ε), see equation (26), where S
(c)
00 is independent of α.516

HYDRODYNAMIC FORCE AND WAVE RUNUP ON THE CYLINDER WITH517

COSINE TYPE RADIAL PERTURBATIONS518

Vertical cylinders with cosine type radial perturbations of their cross section,519

r = R[1 + ε cos(Nθ)], (36)520

where N is a positive integer, were studied by Mansour et al. (2002). The cross sections of the521

cylinders in equation (36) are shown in Figure 9 for R = 1 m, ε = 0.05 and N = 1, 2, 3, 4, 5, 6.522

523

Mansour et al. (2002) derived the leading order corrections to the forces acting on the524

cylinders (36) as ε → 0, and also to the maximum non-dimensional runup, 4max/2A, for525

these cylinders. They also computed the hydrodynamic forces and wave runups by the526

method of boundary integral equation and compared their numerical and first-order asymp-527

totic results. They concluded that the first-order asymptotic solutions well agree with the528

numerical solutions in the range 0 ≤ ε ≤ 0.05. The higher-order asymptotic solution of the529

17



α

Incident wave

x

y

FIG. 7: Orientation of quasi-elliptic (dotdashed line), elliptic (solid line), square (dashed
line) and circular (dotted line) cylinders relative to incident wave.

(a)

F x

(b)

FIG. 8: (a) The non-dimensional hydrodynamic force and (b) the maximum non-dimensional
wave runup on cylinders of circular (solid line), elliptical (dotted line), quasi-elliptical (dashed
line) and square (dotdashed line) cross sections with same cross sectional areas. Angle of
wave incidence, α, is zero.

present paper provides the forces and runups almost identical with the numerical forces and530

runups by Mansour et al. (2002), see Figures 10 and 11. It is observed that the present531

approach compares quite well with the integral equation method of Mansour et al. (2002)532

even for high values of kR. Note that the asymptotic results by Mansour et al. (2002) for533

the maximum non-dimensional wave runup deviate significantly from their numerical results534

for kR ≥ 1.535

To compare the forces computed by Mansour et al. (2002) with the results of the present536

method, the forces in (7) and (8) are multiplied by (1/2) tanh(kh). The resulting non-537
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FIG. 9: The cross sections of the cylinders (36) for R = 1 m, ε = 0.05 and (a) N = 1 (dashed
line), N = 2 (solid line), (b) N = 3 (dashed line), N = 4 (solid line), (c) N = 5 (dashed
line), N = 6 (solid line).

dimensional forces |F x| = [(1/2) tanh(kh)]|F̃x| are shown in Figures 10(a1-a4) for N = 2, 3, 4538

and 6 in (36). These figures demonstrate that the first-order asymptotic forces by Mansour539

et al. (2002) are very close to both the numerical results and to our higher-order forces540

for ε = 0.05 and 0 < kR < 4. The maximum runup 4max/(2A) is more sensitive to the541

number of terms in the asymptotic solution (15), see Figures (10)(b1-b4). It is seen that our542

fifth-order asymptotic solution provides the wave runup almost identical with the numerical543

solution for ε = 0.05. This conclusion is also true for ε = 0.1, see Figure 11, for both the544

force and the maximum runup as functions of the non-dimensional wave number, kR. Note545

that the first-order asymptotic solution cannot be used for ε = 0.1.546

The present method is restricted to vertical cylinders whose cross sections are close to a547

circle. Liu et al. (2016) solved numerically the problem (2) - (4) with no restriction on the548

shape of the cylinder cross section. The method they use is not an asymptotic method but549

a Fourier series method combined with the Galerkin method to satisfy the body condition550

(4). However, authors reported some difficulties with the system of equations they obtained.551

The system is ill posed for some cases after truncating the infinite system of equations.552

Despite the reported difficulties, their results show good agreement with numerical results553

by Mansour et al. (2002). In the present method we deal only with multiplication and554

summation of Fourier series to find the unknown potentials φn, n = 1, 2, 3, 4, so the present555

method is stable in solving the wave diffraction problem for vertical cylinders.556

The effect of the truncation of the Fourier series (12), (21) and (22) on the performance557

of the present asymptotic solution is demonstrated by Figures 12 and 13. Let the number of558

terms m vary from 1 to p in (21) and (22). After each multiplication of two Fourier series the559

resulting Fourier series is truncated to p terms. The system of the equation in the method560

of Liu et al. (2016) is truncated in a similar way because Fourier series are used to represent561

the body shape and the velocity potential.562

Liu et al. (2016) recommended p = 20 for any shapes of the cylinders with cosine type563

section. It was observed that p = 12 in our asymptotic solution provides good agreement564

with the numerical results by Liu et al. (2016). Even p = 6 in our method provides a very565

reasonable agreement with the numerical force and maximum runup. The distributions of566

the wave runup along the cylinder are shown in Figure 13 for p = 20 in the computations567
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FIG. 10: (a1)-(a4) The non-dimensional hydrodynamic force and (b1)-(b4) the maximum
non-dimensional wave runup on the vertical cylinder in (36). Comparison of the results by
the present method (solid line) with the analytical (dashed line) and numerical (• markers)
results by Mansour et al. (2002) for ε = 0.05 and N = 2 in (a1), (b1), N = 3 in (a2), (b2),
N = 4 in (a3), (b3) and N = 6 in (a4), (b4).
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FIG. 11: (a) The non-dimensional hydrodynamic force and (b) the maximum non-
dimensional wave runup on the vertical cylinder in (36). Comparison of the present method
(solid line) with Mansour et al. (2002)’s numerical method (• markers) for ε = 0.1 and
N = 4.
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FIG. 12: The effect of the truncation number p on the non-dimensional (a) hydrodynamic
force and (b) maximum wave runup for ε = 0.05, N = 3 in (36). Liu et al. (2016) numerical
method with p = 9, 20 (• markers), the present method with p = 4 (dashed line), p = 9
(solid line).

by Liu et al. (2016) and p = 6, 12 in our calculations. It is seen that the predictions of the568

wave runup by the present method are good even for waves with kR = 4.569

LONG WAVE APPROXIMATION OF WAVE FORCES570

The formula (5) for the hydrodynamic force F(t) acting on a vertical cylinder with cross571

section D can be simplified for long waves, where ka → 0 and a is a characteristic dimen-572

sion of the cylinder cross section. We shall use the ideas by Haskind (1973, Chapter 2),573

who expressed the forces as integrals of the potential of the incident wave, three radiation574

potentials and their normal derivatives on the cylinder. The radiation potentials describe575

waves generated by the cylinder oscillating in x− and y−directions and due to torsional576

oscillation of the cylinder. Haskind also introduced generalized added masses and damping577

coefficients of vertical cylinders as functions of the non-dimensional wave number ka. The578
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FIG. 13: The non-dimensional wave runup, 4(θ)/2A, for the cylinder (36) with ε = 0.05
and N = 5 computed for (a) kR = 1, (b) kR = 2, (c) kR = 3, (d) kR = 4. The present
asymptotic method with p = 6 (dashed line) and p = 12 (dotted line) is compared with the
numerical results (solid line) by Liu et al. (2016) with p = 20.

generalized added masses approach the added masses of the two-dimensional body D moving579

in unbounded incompressible liquid as ka→ 0. In this section, we limit ourselves to the force580

component only in the direction of the incident wave propagation in the limit as ka → 0,581

with α = 0◦.582

Equations (5) and (6) provide the non-dimensional x−component of the hydrodynamic583

force acting on the cylinder,584

F̃x =
−i
πa2k

∫
∂D

φ(r, θ)nx ds, (37)585

where φ(r, θ) is the solution of the problem (2)-(4) and nx is the x−component of the unit586

normal vector n to the surface of the cylinder. It is convenient to introduce new potential587

ϕ(x, y) by the equation φ(r, θ) = eikx − ik ϕ(x, y). The potential ϕ(x, y) satisfies equation588

(2), describes outgoing waves as r → ∞, and its normal derivative on the cylinder is given589
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by590

∂ϕ

∂n
= eikxnx (on ∂D). (38)591

By using the potential ϕ(x, y) and condition (38), the force (37) can be presented in the592

form593

F̃x =
1

πa2

{
− i
k

∫
∂D

eikx nx ds−
∫
∂D

ϕ
∂ϕ

∂n
e−ikx ds

}
. (39)594

The product eikx nx in the first integral of (39) can be viewed as the scalar product of two595

vectors: (eikx, 0) and n. Then the divergence theorem yields596

− i
k

∫
∂D

eikx nx ds = − i
k

∫
D

div(eikx, 0) dxdy =

∫
D

eikx dxdy.597

Taking the limit in (39) as ka→ 0, where x/a = O(1), we obtain598

F̃x(0) =
1

πa2

[
|D| −

∫
∂D

ϕ0
∂ϕ0

∂n
ds

]
, (40)599

where |D| is the area of the cylinder cross section and ϕ0(x, y) is the limiting value of the600

potential ϕ(x, y) as ka→ 0. The potential ϕ0(x, y) satisfies the following equations601

∇2ϕ0 = 0 (outside D),602

∂ϕ0

∂n
= nx (on ∂D),603

ϕ → 0 (x2 + y2 →∞),604

and describes the two-dimensional flow caused by the motion of the body D in unbounded605

and incompressible liquid in the x−direction at the unit speed. The integral in (40) multiplied606

by −ρ is known as the added mass mxx. Finally607

F̃x(0) =
1

πa2

[
|D|+ mxx

ρ

]
. (41)608

For the elliptic cylinder x2/a2+y2/b2 = 1 with the semi-major axis a and the semi-minor axis609

b, where b = a
√

1− e2 and e is the eccentricity of the ellipse, we have |D| = πab, mxx = ρπb2610

and (41) gives611

F̃x(0) =
b

a
+
b2

a2
=
√

1− e2 + 1− e2 = 2− 3

2
e2 − 1

8
e4 +O(e6),612

which corresponds to the asymptotic formula (32). For the elliptic cylinder x2/b2+y2/a2 = 1,613

we have |D| = πab, mxx = ρπa2 and (41) gives614

F̃x(0) =
b

a
+ 1 = 2− 1

2
e2 − 1

8
e4 +O(e6),615

which corresponds to the asymptotic formula (33).616
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For the square cylinder with side 2a, we have |D| = 4a2 and mxx ≈ 1.51ρπa2, which gives617

F̃x(0) ≈ 4

π
+ 1.51 ≈ 2.7832.618

The fifth-order approximation of the section ”Hydrodynamic Force on Square Vertical Cylin-619

der” with four terms in the series (34) gives |F̃x(0)| ≈ 2.736 and just one term in the series620

(34) gives |F̃x(0)| ≈ 2.563. The latter value is close to that predicted by the theory of621

”equivalent circular radius”, see Figure 4. Therefore, the theory by Mogridge and Jamieson622

(1976) underpredicts the force for long waves by about 8.5%.623

CONCLUSION624

An asymptotic approach to the linear problem of regular water waves interacting with a625

vertical cylinder of arbitrary cross section has been presented. The incident regular wave is626

one-dimensional, water is of finite depth, and the rigid cylinder extends from the bottom to627

the water surface. Deviation of the cylinder surface from a mean circular cylinder is assumed628

small compared with the radius of the mean circular cylinder. The fifth-order asymptotic629

solution of the problem has been obtained. Each term in the asymptotic expansion of the630

velocity potential is the solution of a radiation problem for the circular cylinder. These631

radiation problems differ only by the value of the normal derivative of the corresponding632

potential on the surface of the circular cylinder. The radiation problems have been solved633

by the Fourier method. The numerical solution of the problem has been reduced to opera-634

tions with the Fourier coefficients of the potentials and the shape function. The numerical635

algorithm has been applied to the problems of wave diffraction by elliptic, square and quasi-636

elliptic cylinders and by the cylinder with cosine type radial perturbation. The obtained637

results have been compared with experimental and numerical results by others in terms of638

the hydrodynamic forces and wave runup on cylinders in waves. The present approach pro-639

vides the forces very close to the forces computed numerically and measured in experiments640

for relatively long incident waves, 0 < kR < 4, where 2π/k is the wave length of the incident641

wave. The present approach should be used with care for short incident waves. A reason for642

this conclusion comes from the body boundary condition. The analysis of the velocity poten-643

tials φn revealed that they have terms with factors (kR)2n. Correspondingly, the expansion644

(15) is formally asymptotic only if ε(kR)2 � 1. For small values of ε and short waves with645

λ/R = O(ε1/2), the method of renormalization or multi-scale method can be used to derive646

uniformly valid asymptotic expansions of the hydrodynamic forces.647

The asymptotic method of this paper has been validated for the long-wave approximation.648

The long-wave approximation provides the forces acting on a vertical cylinder of arbitrary649

cross section in linear regular waves through the area of the cylinder cross section and the650

added masses of this cross section. The values of the forces at kR = 0 are exact within the651

linear wave theory. The added mass tables can be used to calculate the forces at kR = 0.652

An advantage of the present approach compared with the numerical solution of the prob-653

lem by a boundary-element method is that it provides the forces and the diffracted wave field654

in terms of the Fourier series of the deviation of the cylinder shape from the circular one.655

The leading-order potential, φ0(r, θ), is independent of these coefficients, the first-order po-656

tential, φ1(r, θ), is a linear form of these coefficients, and the second-order potential φ2(r, θ)657

is a quadratic form of the coefficients. By using these forms of the potentials φn(r, θ), we658
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can formulate the problem of identification of the cylinder and its shape with the help of659

measured elevations of water surface far from the cylinder. We can also determine how much660

some small variations of a cylinder shape change the loads acting on this cylinder in waves,661

and optimize the shape of the cylinder to approach certain restrictions on the loads.662

It was found that cylinders with quasi-elliptic cross section experience the least wave663

force compared with cylinders of elliptic, square and circular cylinders with the same cross664

sectional area for zero angle of wave incidence, see Figure 7.665

In real applications, cylinders are always arranged in groups, therefore the analysis of666

the so-called ”hydrodynamic interaction problem” of several non-circular cylinders in waves667

should be carried out. The present method is very suitable for analysis of this problem and668

it is suggested to solve by iterations satisfying the boundary condition on each cylinder one669

after another and employing the addition theorem of the Bessel functions. The iterations670

are suggested to combine with the asymptotic approach of the present paper, in order to671

improve the convergence of the iterations.672
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