32 research outputs found

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Quellen und Literatur

    No full text

    Nonlinear filtering for map-aided navigation. Part 1. An overview of algorithms

    No full text

    Global perspective of familial hypercholesterolaemia: a cross-sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC)

    No full text
    Background The European Atherosclerosis Society Familial Hypercholesterolaemia Studies Collaboration (FHSC) global registry provides a platform for the global surveillance of familial hypercholesterolaemia through harmonisation and pooling of multinational data. In this study, we aimed to characterise the adult population with heterozygous familial hypercholesterolaemia and described how it is detected and managed globally. Methods Using FHSC global registry data, we did a cross-sectional assessment of adults (aged 18 years or older) with a clinical or genetic diagnosis of probable or definite heterozygous familial hypercholesterolaemia at the time they were entered into the registries. Data were assessed overall and by WHO regions, sex, and index versus non-index cases. Findings Of the 61 612 individuals in the registry, 42 167 adults (21 999 [53·6%] women) from 56 countries were included in the study. Of these, 31 798 (75·4%) were diagnosed with the Dutch Lipid Clinic Network criteria, and 35 490 (84·2%) were from the WHO region of Europe. Median age of participants at entry in the registry was 46·2 years (IQR 34·3–58·0); median age at diagnosis of familial hypercholesterolaemia was 44·4 years (32·5–56·5), with 40·2% of participants younger than 40 years when diagnosed. Prevalence of cardiovascular risk factors increased progressively with age and varied by WHO region. Prevalence of coronary disease was 17·4% (2·1% for stroke and 5·2% for peripheral artery disease), increasing with concentrations of untreated LDL cholesterol, and was about two times lower in women than in men. Among patients receiving lipid-lowering medications, 16 803 (81·1%) were receiving statins and 3691 (21·2%) were on combination therapy, with greater use of more potent lipid-lowering medication in men than in women. Median LDL cholesterol was 5·43 mmol/L (IQR 4·32–6·72) among patients not taking lipid-lowering medications and 4·23 mmol/L (3·20–5·66) among those taking them. Among patients taking lipid-lowering medications, 2·7% had LDL cholesterol lower than 1·8 mmol/L; the use of combination therapy, particularly with three drugs and with proprotein convertase subtilisin–kexin type 9 inhibitors, was associated with a higher proportion and greater odds of having LDL cholesterol lower than 1·8 mmol/L. Compared with index cases, patients who were non-index cases were younger, with lower LDL cholesterol and lower prevalence of cardiovascular risk factors and cardiovascular diseases (all p<0·001). Interpretation Familial hypercholesterolaemia is diagnosed late. Guideline-recommended LDL cholesterol concentrations are infrequently achieved with single-drug therapy. Cardiovascular risk factors and presence of coronary disease were lower among non-index cases, who were diagnosed earlier. Earlier detection and greater use of combination therapies are required to reduce the global burden of familial hypercholesterolaemia. Funding Pfizer, Amgen, Merck Sharp & Dohme, Sanofi–Aventis, Daiichi Sankyo, and Regeneron
    corecore