1,879 research outputs found

    Effect of uniaxial strain on plasmon excitations in graphene

    Full text link
    Uniaxial strain is known to modify significantly the electronic properties of graphene, a carbon single layer of atomic width. Here, we study the effect of applied strain on the composite excitations arising from the coupling of charge carriers and plasmons in graphene, i.e. the plasmarons. Specifically, we predict that the plasmaron energy dispersion, which has been recently observed experimentally in unstrained graphene, is shifted and broadened by applied uniaxial strain. Thus, strain constitutes an additional parameter which may be useful to tune graphene properties in plasmaronic devices.Comment: Invited oral lecture at the 23rd AIRAPT International Conference on "High Pressure Science and Technology", Mumbai (India), September 25-30, 2011. To be published in J. Phys.: Conf. Series (2012

    van der Waals density functionals built upon the electron-gas tradition: Facing the challenge of competing interactions

    Get PDF
    The theoretical description of sparse matter attracts much interest, in particular for those ground-state properties that can be described by density functional theory (DFT). One proposed approach, the van der Waals density functional (vdW-DF) method, rests on strong physical foundations and offers simple yet accurate and robust functionals. A very recent functional within this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412] stands out in its attempt to use an exchange energy derived from the same plasmon-based theory from which the nonlocal correlation energy was derived. Encouraged by its good performance for solids, layered materials, and aromatic molecules, we apply it to several systems that are characterized by competing interactions. These include the ferroelectric response in PbTiO3_3, the adsorption of small molecules within metal-organic frameworks (MOFs), the graphite/diamond phase transition, and the adsorption of an aromatic-molecule on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well suited to tackle these challenging systems. In addition to being a competitive density functional for sparse matter, the vdW-DF-cx construction presents a more robust general purpose functional that could be applied to a range of materials problems with a variety of competing interactions

    Atrial high-rate episodes: prevalence, stroke risk, implications for management, and clinical gaps in evidence

    Get PDF
    Self-terminating atrial arrhythmias are commonly detected on continuous rhythm monitoring, e.g. by pacemakers or defibrillators. It is unclear whether the presence of these arrhythmias has therapeutic consequences. We sought to summarize evidence on the prevalence of atrial high-rate episodes (AHREs) and their impact on risk of stroke. We performed a comprehensive, tabulated review of published literature on the prevalence of AHRE. In patients with AHRE, but without atrial fibrillation (AF), we reviewed the stroke risk and the potential risk/benefit of oral anticoagulation. Atrial high-rate episodes are found in 10-30% of AF-free patients. Presence of AHRE slightly increases stroke risk (0.8% to 1%/year) compared with patients without AHRE. Atrial high-rate episode of longer duration (e.g. those >24 h) could be associated with a higher stroke risk. Oral anticoagulation has the potential to reduce stroke risk in patients with AHRE but is associated with a rate of major bleeding of 2%/year. Oral anticoagulation is not effective in patients with heart failure or survivors of a stroke without AF. It remains unclear whether anticoagulation is effective and safe in patients with AHRE. Atrial high-rate episodes are common and confer a slight increase in stroke risk. There is true equipoise on the best way to reduce stroke risk in patients with AHRE. Two ongoing trials (NOAH-AFNET 6 and ARTESiA) will provide much-needed information on the effectiveness and safety of oral anticoagulation using non-vitamin K antagonist oral anticoagulants in patients with AHRE.info:eu-repo/semantics/publishedVersio

    No trace of a single-degenerate companion in late spectra of SNe 2011fe and 2014J

    Full text link
    Left-over, ablated material from a possible non-degenerate companion can reveal itself after about one year in spectra of Type Ia SNe (SNe Ia). We have searched for such material in spectra of SN 2011fe (at 294 days after the explosion) and for SN 2014J (315 days past explosion). The observations are compared with numerical models simulating the expected line emission. The spectral lines sought for are H-alpha, [O I] 6300 and [Ca II] 7291,7324, and the expected width of these lines is about 1000 km/s. No signs of these lines can be traced in any of the two supernovae. When systematic uncertainties are included, the limits on hydrogen-rich ablated gas in SNe 2011fe and 2014J are 0.003 M_sun and 0.0085 M_sun, respectively, where the limit for SN 2014J is the second lowest ever, and the limit for SN 2011fe is a revision of a previous limit. Limits are also put on helium-rich ablated gas. These limits are used, in conjunction with other data, to argue that these supernovae can stem from double-degenerate systems, or from single-degenerate systems with a spun up/spun down super-Chandrasekhar white dwarf. For SN 2011fe, other types of hydrogen-rich donors can likely be ruled out, whereas for SN 2014J a main-sequence donor system with large intrinsic separation is still possible. Helium-rich donor systems cannot be ruled out for any of the two supernovae, but the expected short delay time for such progenitors makes this possibility less likely, especially for SN 2011fe. The broad [Ni II] 7378 emission in SN 2014J is redshifted by about +1300 km/s, as opposed to the known blueshift of roughly -1100 km/s for SN 2011fe. [Fe II] 7155 is also redshifted in SN 2014J. SN 2014J belongs to a minority of SNe Ia that both have a nebular redshift of [Fe II] 7155 and [Ni II] 7378, and a slow decline of the Si II 6355 absorption trough just after B-band maximum.Comment: 13 pages, submitted to A&

    Towards a working density-functional theory for polymers: First-principles determination of the polyethylene crystal structure

    Full text link
    Equilibrium polyethylene crystal structure, cohesive energy, and elastic constants are calculated by density-functional theory applied with a recently proposed density functional (vdW-DF) for general geometries [Phys. Rev. Lett. 92, 246401 (2004)] and with a pseudopotential-planewave scheme. The vdW-DF with its account for the long-ranged van der Waals interactions gives not only a stabilized crystal structure but also values of the calculated lattice parameters and elastic constants in quite good agreement with experimental data, giving promise for successful application to a wider range of polymers.Comment: 4 pages, 3 figure

    Charge carrier interaction with a purely electronic collective mode: Plasmarons and the infrared response of elemental bismuth

    Full text link
    We present a detailed optical study of single crystal bismuth using infrared reflectivity and ellipsometry. Colossal changes in the plasmon frequency are observed as a function of temperature due to charge transfer between hole and electron Fermi pockets. In the optical conductivity, an anomalous temperature dependent mid-infrared absorption feature is observed. An extended Drude model analysis reveals that it can be connected to a sharp upturn in the scattering rate, the frequency of which exactly tracks the temperature dependent plasmon frequency. We interpret this absorption and increased scattering as the first direct optical evidence for a charge carrier interaction with a collective mode of purely electronic origin; here electron-plasmon scattering. The observation of a \emph{plasmaron} as such is made possible only by the unique coincidence of various energy scales and exceptional properties of semi-metal bismuth.Comment: 4 pages, 4 figure

    Spectral evolution and polarization of variable structures in the pulsar wind nebula of PSR B0540-69.3

    Full text link
    We present high spatial resolution optical imaging and polarization observations of the PSR B0540-69.3 and its highly dynamical pulsar wind nebula (PWN) performed with HST, and compare them with X-ray data obtained with the Chandra X-ray Observatory. We have studied the bright region southwest of the pulsar where a bright "blob" is seen in 1999. We show that it may be a result of local energy deposition around 1999, and that the emission from this then faded away. Polarization data from 2007 show that the polarization properties show dramatic spatial variations at the 1999 blob position arguing for a local process. Several other positions along the pulsar-"blob" orientation show similar changes in polarization, indicating previous recent local energy depositions. In X-rays, the spectrum steepens away from the "blob" position, faster orthogonal to the pulsar-"blob" direction than along this axis of orientation. This could indicate that the pulsar-"blob" orientation is an axis along where energy in the PWN is mainly injected, and that this is then mediated to the filaments in the PWN by shocks. We highlight this by constructing an [S II]-to-[O III]-ratio map. We argue, through modeling, that the high [S II]/[O III] ratio is not due to time-dependent photoionization caused by possible rapid Xray emission variations in the "blob" region. We have also created a multiwavelength energy spectrum for the "blob" position showing that one can, to within 2sigma, connect the optical and X-ray emission by a single power law. We obtain best power-law fits for the X-ray spectrum if we include "extra" oxygen, in addition to the oxygen column density in the interstellar gas of the Large Magellanic Cloud and the Milky Way. This oxygen is most naturally explained by the oxygen-rich ejecta of the supernova remnant. The oxygen needed likely places the progenitor mass in the 20 - 25 Msun range.Comment: Accepted by MNRAS on December 6th 2010, 18 pages, 15 figures. The article with full resolution figures is available here ftp://ftp.astro.su.se/pub/peter/papers/pwn0540_2010_corrected.pd

    Late-Time Optical and UV Spectra of SN 1979C and SN 1980K

    Get PDF
    A low-dispersion Keck I spectrum of SN 1980K taken in August 1995 (t = 14.8 yr after explosion) and a November 1997 MDM spectrum (t = 17.0 yr) show broad 5500 km s^{-1} emission lines of H\alpha, [O I] 6300,6364 A, and [O II] 7319,7330 A. Weaker but similarly broad lines detected include [Fe II] 7155 A, [S II] 4068,4072 A, and a blend of [Fe II] lines at 5050--5400 A. The presence of strong [S II] 4068,4072 A emission but a lack of [S II] 6716,6731 A emission suggests electron densities of 10^{5-6} cm^{-3}. From the 1997 spectra, we estimate an H\alpha flux of 1.3 \pm 0.2 \times 10^{-15} erg cm^{-2} s^{-1} indicating a 25% decline from 1987--1992 levels during the period 1994 to 1997, possibly related to a reported decrease in its nonthermal radio emission.Comment: 21 pages, 8 figures, submitted to the Astronomical Journa

    Optical identification of the 3C 58 pulsar wind nebula

    Full text link
    We have performed a deep optical imaging of 3C 58 SNR with the NOT in the B and V bands to detect the optical counterpart of the associated pulsar J0295+6449 and its torus-like wind nebula visible in X-rays. We analyzed our data together with the archival data obtained with the Chandra in X-rays and with the Spitzer in the mid-IR. We detect a faint extended elliptical object with B=24.06 and V=23.11 whose peak brightness and center position are consistent at the sub-arcsecond level with the position of the pulsar. Its morphology and orientation are in excellent agreement with the torus-like pulsar nebula, seen almost edge on in X-rays although its extension is only about a half of that in X-rays. In the optical we likely see only the brightest central part of the torus with the pulsar. The object is identical to the counterpart of the torus recently detected in the mid-IR. The estimated pulsar contribution to the optical flux is less than 10%. Combinig the optical/mid-IR fluxes and X-ray power-law spectrum extracted from the spatial region constrained by the optical/IR source extent we compile a tentative multi-wavelength spectrum of the central part of the nebula. Within uncertainties of the interstellar extinction it is reminiscent of either the Crab or B0540-69 pulsar wind nebula spectra. The properties of the object strongly suggest it to be the optical counterpart of the 3C 58 pulsar + its wind nebula system, making 3C 58 the third member of such a class of the torus-like systems identified in the optical and mid-IR.Comment: 12 pages including 7 figures, submitted for publication in A&A. For high resolution images, see http://www.ioffe.ru/astro/NSG/obs/3C58
    • …
    corecore