Uniaxial strain is known to modify significantly the electronic properties of
graphene, a carbon single layer of atomic width. Here, we study the effect of
applied strain on the composite excitations arising from the coupling of charge
carriers and plasmons in graphene, i.e. the plasmarons. Specifically, we
predict that the plasmaron energy dispersion, which has been recently observed
experimentally in unstrained graphene, is shifted and broadened by applied
uniaxial strain. Thus, strain constitutes an additional parameter which may be
useful to tune graphene properties in plasmaronic devices.Comment: Invited oral lecture at the 23rd AIRAPT International Conference on
"High Pressure Science and Technology", Mumbai (India), September 25-30,
2011. To be published in J. Phys.: Conf. Series (2012