38 research outputs found

    Defective Secretion of Islet Hormones in Chromogranin-B Deficient Mice

    Get PDF
    Granins are major constituents of dense-core secretory granules in neuroendocrine cells, but their function is still a matter of debate. Work in cell lines has suggested that the most abundant and ubiquitously expressed granins, chromogranin A and B (CgA and CgB), are involved in granulogenesis and protein sorting. Here we report the generation and characterization of mice lacking chromogranin B (CgB-ko), which were viable and fertile. Unlike neuroendocrine tissues, pancreatic islets of these animals lacked compensatory changes in other granins and were therefore analyzed in detail. Stimulated secretion of insulin, glucagon and somatostatin was reduced in CgB-ko islets, in parallel with somewhat impaired glucose clearance and reduced insulin release, but normal insulin sensitivity in vivo. CgB-ko islets lacked specifically the rapid initial phase of stimulated secretion, had elevated basal insulin release, and stored and released twice as much proinsulin as wildtype (wt) islets. Stimulated release of glucagon and somatostatin was reduced as well. Surprisingly, biogenesis, morphology and function of insulin granules were normal, and no differences were found with regard to β-cell stimulus-secretion coupling. We conclude that CgB is not required for normal insulin granule biogenesis or maintenance in vivo, but is essential for adequate secretion of islet hormones. Consequentially CgB-ko animals display some, but not all, hallmarks of human type-2 diabetes. However, the molecular mechanisms underlying this defect remain to be determined

    Barriers to the Intestinal Absorption of Four Insulin-Loaded Arginine-Rich Nanoparticles in Human and Rat

    Get PDF
    Peptide drugs and biologics provide opportunities for treatments of many diseases. However, due to their poor stability and permeability in the gastrointestinal tract, the oral bioavailability of peptide drugs is negligible. Nanoparticle formulations have been proposed to circumvent these hurdles, but systemic exposure of orally administered peptide drugs has remained elusive. In this study, we investigated the absorption mechanisms of four insulin-loaded arginine-rich nanoparticles displaying differing composition and surface characteristics, developed within the pan-European consortium TRANS-INT. The transport mechanisms and major barriers to nanoparticle permeability were investigated in freshly isolated human jejunal tissue. Cytokine release profiles and standard toxicity markers indicated that the nanoparticles were nontoxic. Three out of four nanoparticles displayed pronounced binding to the mucus layer and did not reach the epithelium. One nanoparticle composed of a mucus inert shell and cell-penetrating octarginine (ENCP), showed significant uptake by the intestinal epithelium corresponding to 28 ± 9% of the administered nanoparticle dose, as determined by super-resolution microscopy. Only a small fraction of nanoparticles taken up by epithelia went on to be transcytosed via a dynamin-dependent process. In situ studies in intact rat jejunal loops confirmed the results from human tissue regarding mucus binding, epithelial uptake, and negligible insulin bioavailability. In conclusion, while none of the four arginine-rich nanoparticles supported systemic insulin delivery, ENCP displayed a consistently high uptake along the intestinal villi. It is proposed that ENCP should be further investigated for local delivery of therapeutics to the intestinal mucosa.Swedish Research CouncilCompetitive Reference Groups, Consellería de Educación e Ordenación Universitaria, Xunta de GaliciaEuropean TRANS-INT ConsortiumEuropean Union’s Seventh Framework Programme for research, technological development and demonstrationErasmus Mundus programme, “NanoFar: European Doctorate in Nanomedicine and Pharmaceutical Innovation”ALF funds, Swedish Government, Swede

    SUR1 Regulates PKA-independent cAMP-induced Granule Priming in Mouse Pancreatic B-cells.

    Get PDF
    Measurements of membrane capacitance were applied to dissect the cellular mechanisms underlying PKA-dependent and -independent stimulation of insulin secretion by cyclic AMP. Whereas the PKA-independent (Rp-cAMPS–insensitive) component correlated with a rapid increase in membrane capacitance of ~80 fF that plateaued within ~200 ms, the PKA-dependent component became prominent during depolarizations >450 ms. The PKA-dependent and -independent components of cAMP-stimulated exocytosis differed with regard to cAMP concentration dependence; the Kd values were 6 and 29 µM for the PKA-dependent and -independent mechanisms, respectively. The ability of cAMP to elicit exocytosis independently of PKA activation was mimicked by the selective cAMP-GEFII agonist 8CPT-2Me-cAMP. Moreover, treatment of B-cells with antisense oligodeoxynucleotides against cAMP-GEFII resulted in partial (50%) suppression of PKA-independent exocytosis. Surprisingly, B-cells in islets isolated from SUR1-deficient mice (SUR1-/- mice) lacked the PKA-independent component of exocytosis. Measurements of insulin release in response to GLP-1 stimulation in isolated islets from SUR1-/- mice confirmed the complete loss of the PKA-independent component. This was not attributable to a reduced capacity of GLP-1 to elevate intracellular cAMP but instead associated with the inability of cAMP to stimulate influx of Cl- into the granules, a step important for granule priming. We conclude that the role of SUR1 in the B cell extends beyond being a subunit of the plasma membrane KATP-channel and that it also plays an unexpected but important role in the cAMP-dependent regulation of Ca2+-induced exocytosis

    Odontoblast phosphate and calcium transport in dentinogenesis

    No full text
    It has been suggested that odontoblasts are instrumental in translocating Ca2+ and inorganic phosphate (Pi) ions during the mineralization of dentin. The aim of this thesis was, therefore, to study the expression of components of the transcellular ion transport system, Na+/Ca2+ exchangers and Na+-Pi cotransporters, in odontoblastic and osteoblastic cells. Their activity was assayed in osteoblast-like cells and in the recently developed MRPC-1 odontoblast-like cell line. To assess the relationship between ion transport and mineralization, Ca2+ and Pi uptake activities were determined in mineralizing cultures of MRPC-1 cells. Osteoblastic and odontoblastic cells showed an identical expression pattern of Na+/Ca2+ exchanger splice-variants, NCX1.3, NCX1.7 and NCX1.10, derived from the NCX1 gene, while NCX2 was not expressed. The cells showed a high sodium-dependent calcium extrusion activity. Regarding Na+-Pi cotransporter expression, Glvr-1, Ram-1 and the two high capacity cotransporters Npt-2a and Npt-2b were found to be expressed in odontoblasts and MRPC-1 cells. Osteoblast-like cells differed from this in expressing the Npt-1 but not the Ram-1 gene but were otherwise identical to the odontoblastic cells. Odontoblast-like cells exhibited almost twice the sodium-dependent Pi uptake activity of osteoblast-like cells. The presence of NaPi-2a and NaPi-2b, gene products of Npt-2a and Npt-2b, was verified in vivo by immunohistochemistry on mouse teeth. Both cotransporters could be detected in fully differentiated, polarized odontoblasts but not in preodontoblasts prior to dentin formation. Both cotransporters were detected in adjacent bone and in ameloblasts. Studying ion uptake in mineralizing MRPC-1 cultures, large changes were detected concomitant with the onset of mineral formation, when phosphate uptake increased by 400% while calcium uptake started to decline. The increase in Pi uptake was found to be due to activation of the NaPi-2a cotransporter. MRPC-1 cells expressed an odontoblast-like phenotype already at the onset of culture, but in order to form mineral a differentiation involving their ion transporters seems necessary. Calculating the theoretical rate of ion transport needed for dentin formation and comparing with data from the studies in this thesis showed that transcellular ion transport is both possible and sufficient to meet the phosphate and calcium demands of dentinogenesis

    Oral absorption of peptides and nanoparticles across the human intestine : Opportunities, limitations and studies in human tissues

    No full text
    In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed

    Secretory and electrophysiological characteristics of insulin cells from gastrectomized mice: Evidence for the existence of insulinotropic agents in the stomach.

    Get PDF
    Mice were subjected to gastrectomy (GX) or sham operation (controls). Four to six weeks later the pancreatic islets were isolated and analysed for cAMP or alternatively incubated in a Krebs-Ringer based medium in an effort to study insulin secretion and cAMP accumulation in response to glucose or the adenylate cyclase activator forskolin. Freshly isolated islets from GX mice had higher cAMP content than islets from control mice, a difference that persisted after incubation for I h at a glucose concentration of 4 mmol/l. Addition of forskolin to this medium induced much greater cAMP and insulin responses in islets from GX mice than in islets from control mice. In contrast, the insulin response to high glucose (16.7 mmol/l) was much weaker in GX islets than in control islets. Glucose-induced insulin release was associated with a 2-fold rise in the cAMP content in control islets. Surprisingly no rise in cAMP was noted in GX islets incubated at high glucose. Capacitance measurements conducted on isolated insulin cells from GX mice revealed a much lower exocytotic response to a single 500 ms depolarisation (from -70 mV to zero) than in control insulin cells. Addition of cAMP to the cytosol enhanced the exocytotic response in insulin cells from control mice but not from GX mice. The depolarisation-triggered inward Ca2+ current in insulin cells from GX mice did not differ from that in control mice, and hence the reduced exocytotic response following GX cannot be ascribed to a decreased Ca2+ influx. Experiments involving a train of ten 500 ms depolarisations revealed that the exocytotic response was prominent in control insulin cells but modest in GX insulin cells. It seems that cAMP is capable of eliciting insulin release from insulin cells of GX mice only when cAMP is generated in a specific microdomain conceivably through the intervention of membrane-associated adenylate cyclases that can be activated by forskolin. The GX-evoked impairment of depolarisation-induced exocytosis and glucose-stimulated insulin release may reflect the lack of a gastric agent that serves to maintain an appropriate insulin response to glucose and an appropriate exocytotic response to depolarisation by raising cAMP in a special glucose-sensitive compartment possibly regulated by a soluble adenylate cyclase. (c) 2006 Elsevier B.V. All rights reserved

    The nptA Gene of Vibrio cholerae Encodes a Functional Sodium-Dependent Phosphate Cotransporter Homologous to the Type II Cotransporters of Eukaryotes

    No full text
    The nptA gene of Vibrio cholerae has significant protein sequence homology with type II sodium-dependent phosphate (P(i)) cotransporters found in animals but not previously identified in prokaryotes. The phylogeny of known type II cotransporter sequences indicates that nptA may be either an ancestral gene or a gene acquired from a higher eukaryotic source. The gene was cloned into an expression vector under the control of an inducible promoter and expressed in Escherichia coli. The results demonstrate that nptA encodes a functional protein with activity similar to that of the animal enzyme, catalyzing high-affinity, sodium-dependent P(i) uptake with comparable affinities for both sodium and phosphate ions. Furthermore, the activity of NptA is influenced by pH, again in a manner similar to that of the NaPi-2a subtype of the animal enzyme, although it lacks the corresponding REK motif thought to be responsible for this phenomenon. P(i) uptake activity, a component of which appeared to be sodium dependent, was increased in V. cholerae by phosphate starvation. However, it appears from the use of a reporter gene expressed from the nptA promoter that none of this activity is attributable to the induction of expression from nptA. It is thus proposed that the physiological function of NptA protein may be the rapid uptake of P(i) in preparation for rapid growth in nutrient-rich environments and that it may therefore play a role in establishing infection
    corecore