60 research outputs found
Periodic homogenization of a pseudo-parabolic equation via a spatial-temporal decomposition
Pseudo-parabolic equations have been used to model unsaturated fluid flow in
porous media. In this paper it is shown how a pseudo-parabolic equation can be
upscaled when using a spatio-temporal decomposition employed in the
Peszyn'ska-Showalter-Yi paper [8]. The spatial-temporal decomposition
transforms the pseudo-parabolic equation into a system containing an elliptic
partial differential equation and a temporal ordinary differential equation. To
strengthen our argument, the pseudo-parabolic equation has been given
advection/convection/drift terms. The upscaling is done with the technique of
periodic homogenization via two-scale convergence. The well-posedness of the
extended pseudo-parabolic equation is shown as well. Moreover, we argue that
under certain conditions, a non-local-in-time term arises from the elimination
of an unknown.Comment: 6 pages, 0 figure
Two-scale convergence for locally-periodic microstructures and homogenization of plywood structures
The introduced notion of locally-periodic two-scale convergence allows to
average a wider range of microstructures, compared to the periodic one. The
compactness theorem for the locally-periodic two-scale convergence and the
characterisation of the limit for a sequence bounded in are
proven. The underlying analysis comprises the approximation of functions, which
periodicity with respect to the fast variable depends on the slow variable, by
locally-periodic functions, periodic in subdomains smaller than the considered
domain, but larger than the size of microscopic structures. The developed
theory is applied to derive macroscopic equations for a linear elasticity
problem defined in domains with plywood structures.Comment: 22 pages, 4 figure
Crossed ladders and Euler’s quartic
We investigate a particular form of the classical “crossed ladders” problem,
finding many parametrized solutions, some polynomial, and some involving
Fibonacci and Lucas sequences. We establish a connection between this particular
form and a quartic equation studied by Euler, giving corresponding
solutions to the latter
On weak convergence of locally periodic functions
We prove a generalization of the fact that periodic functions converge weakly
to the mean value as the oscillation increases. Some convergence questions
connected to locally periodic nonlinear boundary value problems are also
considered.Comment: arxiv version is already officia
Some sharp inequalities for integral operators with homogeneous kernel
One goal of this paper is to show that a big number of inequalities for functions in L-p(R+), p >= 1, proved from time to time in journal publications are particular cases of some known general results for integral operators with homogeneous kernels including, in particular, the statements on sharp constants. Some new results are also included, e.g. the similar general equivalence result is proved and applied for 0 < p < 1. Some useful new variants of these results are pointed out and a number of known and new Hardy-Hilbert type inequalities are derived. Moreover, a new Polya-Knopp (geometric mean) inequality is derived and applied. The constants in all inequalities in this paper are sharp
Antibiotic cycling versus mixing: the difficulty of using mathematical models to definitively quantify their relative merits.
Published PDF version deposited in accordance with SHERPA RoMEO guidelines.We ask the question Which antibiotic deployment protocols select best against drug-resistant microbes: mixing or periodic cycling? and demonstrate that the statistical distribution of the performances of both sets of protocols, mixing and periodic cycling, must have overlapping supports. In other words, it is a general, mathematical result that there must be mixing policies that outperform cycling policies and vice versa. As a result, we agree with the tenet of Bonhoefer et al. [1] that one should not apply the results of [2] to conclude that an antibiotic cycling policy that implements cycles of drug restriction and prioritisation on an ad-hoc basis can select against drug-resistant microbial pathogens in a clinical setting any better than random drug use. However, nor should we conclude that a random, per-patient drug-assignment protocol is the de facto optimal method for allocating antibiotics to patients in any general sense
- …