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Abstract. We ask the question Which antibiotic deployment protocols select

best against drug-resistant microbes: mixing or periodic cycling? and demon-

strate that the statistical distribution of the performances of both sets of pro-
tocols, mixing and periodic cycling, must have overlapping supports. In other

words, it is a general, mathematical result that there must be mixing policies

that outperform cycling policies and vice versa.
As a result, we agree with the tenet of Bonhoefer et al. [1] that one should

not apply the results of [2] to conclude that an antibiotic cycling policy that
implements cycles of drug restriction and prioritisation on an ad-hoc basis can

select against drug-resistant microbial pathogens in a clinical setting any better

than random drug use. However, nor should we conclude that a random, per-
patient drug-assignment protocol is the de facto optimal method for allocating

antibiotics to patients in any general sense.

1. Background. The last decade or so has produced a number of theoretical ap-
proaches towards increasing our understanding of how to best deploy antibiotics in
order to select against resistant pathogens in clinical settings and [3, 4] are two of
the most important papers in this field. We too are interested in this important
problem from a theoretical perspective. In a previous paper [2], motivated by [3, 4],
we sought to address the search for optimal drug deployment protocols from the
perspective of optimal control theory.

This article is an attempt to understand a possible source of the discrepancy
between what is claimed in the letter [1] and in our article [2]. It is not our intention
here or elsewhere to advocate on behalf of cycling antibiotics in clinical contexts or
even in theory, rather it is to highlight the difficulties of definitively answering the
question of which protocol class selects best against resistance, cycling or mixing.

The purpose of [2] was to show that by relaxing the periodicity constraint of
antibiotic cycling, it is theoretically possible to design drug rotation protocols that
are arbitrarily close to the optimum. Therefore, we agree with [1] that there is
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absolutely no theoretical basis to support the claim that periodic cycling is optimal
in any general sense and we too are concerned that a reader might be led to that
conclusion. We also argue in [2], however, that strategies based on the random,
per-patient allocation of drugs can only be optimal in numerically rare, non-generic
theoretical cases.

To illustrate that 50-50 mixing is not always superior to antibiotic cycling as
claimed in [3, 4], in [2] we constructed counterexamples whereby a specific period
of rotation between drugs from different functional classes and with different costs
of resistance outperformed even the best mixing protocol. We did not claim that
any periodic cycling protocol could outperform all antibiotic mixing protocols.

What we can assert, and prove in this paper, is a general property of theoretical
models of drug deployment as proposed in [3, 4] that, mathematically speaking,
the best periodic cycling protocols are as good as the best mixing strategies. More
precisely, we prove that the statistical support of the distributions of performances
of both classes of protocol must overlap and believe that this property might be
invoked as a tentative explanation of the inconclusiveness of recent clinical trials
designed to evaluate the efficacy of cycling [5].

1.1. Scientific context. Consider the following clinical scenario. An intensive care
unit or hospital ward has a limitless supply of two antibiotic drugs each of which
may be used to treat a pathogenic infection, the pathogen can acquire resistance to
either drug, but not both simultaneously and the drugs cannot be given as part of
a combination treatment. Let us choose a period of observation of the ward, we call
this time T and in the absence of any synergy between model and data, we refrain
from defining its units. It is our goal to maintain and indeed maximise the efficacy
of the drugs in our possession over this period and within this scenario we ask the
following question.

Do the protocols that select optimally against drug-resistant pathogens
‘rotate’ between different antibiotics, never treating two patients simul-
taneously with different drugs?

This question is close in spirit to one posed by Niederman [6] in the wake of a clinical
trial [11] where the outcome of a drug rotation policy, at least in that trial, had
been positive. An inspection of the clinical trials literature since that time reports
the body of studies on the performance of antibiotic rotation as inconclusive [5].

1.2. Definition of rotation. For the purposes of this paper we define a cycling
protocol between the two antibiotics, labelled ‘drug A’ and ‘drug B’, as follows. Two
parameters, τ1 and τ2 are used to define the periodic cycling protocol, a function
A(τ1, τ2)(t), defined for all t within the time interval [0, T ] such that

A(τ1, τ2)(t) =
{

1 : 0 ≤ t ≤ τ1,
0 : τ1 < t ≤ τ1 + τ2,

and extended so that A(τ1, τ2) has period τ1 + τ2. The indicator function A(τ1, τ2)
so-defined tells us when to treat everyone with drug A and hence the number ‘1’ in
the definition of A(τ1, τ2). If A(τ1, τ2) is zero, everyone is treated with drug B.

This, we believe, is different to the definition of what constitutes a cycling proto-
col in [1] whereby it appears that parameters are restricted so that, in our notation,
T/(τ1 + τ2) and τ1 + τ2 are both integers. As a result, we shall further restrict
the definition of A(τ1, τ2) and attach the adjective congruent to describe cycling
protocols such that τ1 + τ2 is the (real-valued) period of cycling and T/(τ1 + τ2) is
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Figure 1. (A) A congruent cycling protocol whereby T = 3(τ1 +
τ2). (B) A non-congruent cycling protocol: it is possible that the
observation time, T , could fall mid-cycle for the best protocols; this
possibility is not analysed here.

an integer. The set of all congruent cycling protocols defined in this way will be
denoted Cyc, a larger set than considered in [1].

It is our contention that non-congruent cycles should also be analysed. When a
clinical trial is designed and a period of observation, T , chosen, there is no reason to
expect that the optimal cycling protocol will turn out be related to the value of T
in a manner imposed a priori by the observer. To artificially constrain the period of
cycling to the interval of observation might well miss the best cycling cadences; how
might we ascertain, a priori, that the correct cadence for the exchange of different
antibiotics over an observation period of 365 days is not 27 days? Nevertheless, it is
sufficient for our purposes to restrict attention to congruent cycles in the remainder.

For brevity we do not consider the effect of clinician compliance on our results,
although this is done in [3]; this would require a straightforward re-definition of
A(τ1, τ2) to permit it to take on values above 0% and below 100%.

1.3. Optimal cycling and mixing: two impractical protocols. The criticism
in [1] that protocols determined using optimal control theory cannot be implemented
in practise is valid. While the randomised allocation of drugs in a population
(or 50-50 mixing) described in [3, 4] are practicable (also see [16]), we argue that
the optimal mixing protocol defined in [1] as optimally dividing the drugs between
appropriately sized patient groups is also an impractical, theoretical concept.

Moreover, even if it may be possible in theory to determine the best period of
cycling, the best mixing proportion or even the optimal protocol, doing so certainly
does not answer the much harder question

What is the likelihood that a given rotation will outperform a given mix-
ing protocol?

The difficulties in providing a meaningful answer to this are not to be underesti-
mated. One would need a mathematical model of the epidemiological dynamics at
play in the hospital capable of making hindcasts and predictions calibrated against
known data. This would be akin to predicting the weather, only potentially harder
because of the absence of physical laws. Attempts have been made at using simple
mathematical models to produce forecasts of antibiotic resistance evolution over the
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coming decades [9], but criticism of the lack of biological depth followed [8]. The
best one can ever hope for is to provide an ensemble of possible futures, as in [7].
As a result, it would be churlish to assert, on the basis of any one epidemiological
model, that a specific protocol achieves optimality in real, clinical contexts or even
just for a large class of mathematical models.

The purpose of [2] is to provide general results, really little more than a reformu-
lation of known mathematical ideas, which are subsequently applied to two specific
mathematical models taken from [3, 4]. These applications illustrate that a wide va-
riety of conditions are met whereby the best non-periodic rotations can outperform
the best mixing protocol and such conditions are not rare but arise when so-called
drug symmetries are broken. The negative answer to Brown and Nathwani’s ques-
tion posed in the clinical review [5], Does resistance to different antibiotics develop
at the same rate? provides one example of such an asymmetry.

The difficulty of determining optimal treatment protocols in practice is real and
so we proposed adaptive rotation protocols as a practicable strategy that relies only
on observations of local patterns of susceptibility and resistance to decide which
drug, A or B, to give [2]. Note, we do not claim that our adaptive feedback rule
is anywhere near to being optimal nor a good approximation for such. It is a
merely a tool for determining rotational protocols that outperform optimal mixing
and we find, by example, that even this simple heuristic can achieve this goal for
particular exemplar models. We do claim that the adaptive protocols defined in
[2] that seek to exploit more information by sampling the patient cohort for drug-
resistant pathogens more frequently, in turn, perform better. We give examples
to show that such protocols can, given enough information, outperform optimal
mixing; [1] does not provide any evidence that this statement is false. Furthermore,
it is absolutely true that the difference in performance between optimal rotation
and optimal mixing found in models may be marginal, but this difference will be
specific to the parameters implemented within any particular model and specific to
the model itself.

We would like to emphasize that the analysis provided in [2] is valid for a large
class of epidemiological models1 and independent of any particular parameter values
or initial conditions. In particular, our only assumption over the interval of obser-
vation, T , is that it has to be finite, for our arguments to work it cannot be infinite.
For this reason, we disagree with [1] that the arguments presented in [2] are only
valid in general for short intervals of observation and are solely due to ‘transients’.
One must also bear in mind that as T is finite it is also a parameter in the problem
and that optimal mixing, optimal cycling and the theoretically optimal protocol
may well all depend on T itself. Hence there is no general rationale to support
the idea that an optimal protocol found at T = 50, say, will also be optimal when
extended to T = 51, let alone to T =∞.

Instead of seeking for a particular set of parameters where periodic cycling out-
performs mixing in specific models, in the following section we will provide statistical
arguments that may help understand the difficulties that arise when trying to quan-
tify the differences between cycling and mixing, and we will demonstrate that it is
always possible to find cycling protocols that outperform mixing, and vice versa.

1There are many antibiotic deployment problems that one could pose outside of the mathe-
matical class that we analyse in this article, but this class does encompass some of the models

presented in [4, 3].
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2. Cycling versus mixing: a theorem concerning their statistics. Rather
than delve into the details of any particular epidemiological scenario or mathe-
matical model, we shall keep this analysis general and work for the moment in an
abstract framework. First of all, we shall need the vector of all the different patient
classes. Following previous approaches we could write

y(t) = (S(t), RA(t), RB(t), X(t)),

say, where each entry represents a time-series of the proportion of patients in differ-
ent classes: drug-susceptible bacterial infections, drug-A resistant infections, drug-B
resistant infections and uncolonised patients, respectively.

In principle we would need a mathematical model to describe how the vector
y(t) changes in time. Let us assume that the hospital will operate at its maximal
capacity at all times so that the sum of elements in y(t) must be a constant value.
We may assume without the loss of any generality that this value is unity in the
remainder, hence the entries of y(t) will contain the relative proportions of each of
the different patient classes.

Let us now suppose the existence of a dynamical model, specifying none of its
detail, of the form

d

dt
y = F (y) +A(t)Ga(y) +B(t)Gb(y); (1)

the models in [4, 3] are of this form. In (1) the functions Ga and Gb describe how
the dynamics of the ICU unit or hospital ward are affected when we use one of the
drugs, drug A or drug B. For example the use of drug A might well be positively
correlated with selection for drug A-resistant pathogens, thus increasing the value of
d
dtRA(t). For equation (1) to make any sense we also need an initial condition. We
could say y(0) = (1, 0, 0, 0) so that all patients are infected with the drug-susceptible
pathogen to begin with, but with no drug-resistant pathogens. Clearly there are
many other choices that could also be used and we will not restrict attention to
any one in particular. Let us also suppose that policy ensures that everyone in the
hospital is treated, according to our assumptions this means that A(t) + B(t) = 1
for all times.

Under mild conditions, the resulting equation
d

dt
y = F (y) +A(t)Ga(y) + (1−A(t))Gb(y). (2)

can be shown to define a mathematical dependancy or mapping in the sense that
to each function A(t) representing a drug-deployment policy, we can associate a
solution y(t) that depends on A; we will write y(A) or y(A)(t) for this dependancy.
Provided a natural technical assumption given in [2] holds, namely that there exists
a constant K independent of A such that for any solution of (2) there results

lim sup
t→∞

‖y(t)‖ ≤ K, (3)

the vector-valued function y(A)(t) can be extended to the entire interval [0, T ]. As
we tacitly assumed earlier in this discussion that the entries of y(A)(t) sum to unity
for all t and for any bounded function A between 0 and 1, we may assume (3) holds
throughout our discussion (see appendix for notation).

We want to decide upon a drug deployment policy, A(t), that minimises some
performance criterion. So, we now define a weight vector w that gives the relative
importance of each component of y(A)(t). A mathematical optimisation procedure
can determine the optimal policies by locating a function or family of functions A(t)
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between 0 and 1 such that the measure of the performance of the protocol A defined
by

P(A) :=
1
T

∫ T

0

w · y(A)(t)dt (4)

is minimal.
So, for example, if w = (0, 1, 1, 0), then the performance of our policy is mea-

sured by the number of observed drug-resistant infections per unit time: w ·y(t) =
RA(t) +RB(t); throughout the remainder, the latter will be our performance crite-
rion. Likewise, if w = (0, 0, 0,−1) then w·y(t) = −X(t) and by minimising P(A) we
can maximise the number of uncolonised patients seen over the observation period.

2.1. Which is optimal: mixing or cycling? Notice that the performance mea-
sure can be thought of as a functional: to each protocol A(t), a function defined
on the interval [0, T ] taking values in the interval [0, 1], we can associate the value
P(A). Our performance measure P(·) makes sense as a mapping when we supply
it with a domain, so let us define the following spaces of functions:

Let Per denote the set of all periodic functions bounded between 0 and 1, defined
on the observation interval [0, T ] and with period T/n for some integer n ≥ 1; these
functions are so constrained because we cannot possibly treat more than all the
patients in the hospital or ward. Let BB be the set of functions bounded between 0
and 1 such that for all t between 0 and T one of either α(t) = 0 or α(t) = 1 must be
true, where α represents any function in BB; thus BB represents the set of protocols
that only deploy one drug at a time. Now define Cyc := BB∩Per which is the set of
all congruent, periodic cycling protocols. The set of mixing protocols, Mix, is much
smaller and defined by the constant functions, so that a mixing protocol α satisfies
α(t) = c for 0 ≤ t ≤ T and some constant c between 0 and 1; the value c = 1/2
corresponds to the so-called ‘50-50’ or random mixing protocol.

The following mathematical results are key to our argument.

Corollary 1. The best possible performance of the set of congruent antibiotic cy-
cling protocols is at least as good as the best performance of the mixings in the sense
that

inf
A∈Cyc

P(A) ≤ inf
A∈Mix

P(A).

Proof. Suppose, seeking a contradiction, that infA∈Cyc P(A) > infA∈Mix P(A) =
P(m) where m ∈ [0, 1] is a constant. However, by Theorem B.1 of the appendix
there is a sequence cn

∗
⇀m as n→∞ and therefore

P(m) = lim
n→∞

P(cn) ≥ inf
A∈Cyc

P(A) > inf
A∈Mix

P(A) = P(m)

because P is continuous with respect to weak∗ convergence. This is a contradiction
and the result follows.

Let us examine more closely what this mathematical result means theoretically
for our ambiguously phrased question of whether ‘cycling or mixing is best’. Firstly,
because of the form of P (it is continuous with respect to weak∗ convergence) a
type of robustness with respect to the cycles follows: if there is at least one cycling
protocol that outperforms optimal mixing, there are infinitely many nearby cycling
and acyclical drug rotation protocols that also outperform optimal mixing.
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Secondly, if the optimal mixing protocol, m say, performs better than all the
congruent cycling protocols and yet ε > 0 is any number giving a measure of sub-
optimality, then there is a congruent cycling policy Acycε and a corresponding state
response y(Acycε ) such that

P(m) + ε > P(y(Acycε )).

This tells us that if the optimal antibiotic mixing performs better than all the
cycling protocols in our model, if we want a cycling policy that performs within
99% or 99.9% of the performance of the best mixing, there are cycling policies in
Cyc that will achieve this.

From the perspective of seeking theoretical support for antibiotic cycling this ap-
pears to represent a positive outcome but, particularly in light of the accompanying
critique [1], we will discuss the following result. We believe it may have important
practical implications.

Corollary 2. The worst possible performance of the set of congruent antibiotic
cycling protocols is at least as bad as the worst performance of the mixings in the
sense that

sup
A∈Cyc

P(A) ≥ sup
A∈Mix

P(A).

Proof. The proof is almost identical to Corollary 1.

(a) (b)

Figure 2. (A) The performance measure P defines a performance
surface formed from a sample of congruent cycling protocols (shown
as a blue-green surface); red shows the performance of optimal
mixing (p), yellow of 50-50 mixing and green the worst possible
mixing (p). (B) The red region shows the neighbourhood from (A)
where the best cycling protocols outperform the best mixing, the
yellow region shows where cycling outperforms 50-50 mixing. In
both (A) and (B) we used T = 50.

Let us now define the performances of the best and worst mixing protocols:

p := min
0≤m≤1

P(m) and p := max
0≤m≤1

P(m).
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If we draw the graph of the performance surface P(A(τ1, τ2)) as a function of (τ1, τ2)
then Corollaries 1 and 2 predict that this two-dimensional graph will either just
touch, or lie above p in one region of the (τ1, τ2) plane. The same theory predicts
it will also either just touch, or lie below p in another region of the plane. Figure 2
illustrates a particular instance of this idea, it was obtained using a model from [3]
whereby the performance surface of the cycling protocols does in fact pass below
the performance of the optimal mixing protocol (by around 1% or less); Figure 2(b)
illustrates where this property is satisfied in the (τ1, τ2)-plane.

Let us phrase this slightly differently: for each performance measure p ∈ (p, p)
lying anywhere between the extreme performances of the best and worst mixing
protocols, there is a congruent cycling protocol defined by (τ1, τ2) such that p =
P(A(τ1, τ2)). From this we deduce what might be called an interlacing property: for
any model of the form (2) there exist congruent cycling protocols, labelled (τ11, τ12)
and (τ21, τ22), and two mixing protocols, m1 and m2, such that

P(m1) < P(A(τ11, τ12)) < P(m2) < P(A(τ21, τ22)). (5)

In light of this, when we ask Which is optimal: mixing or cycling? it is impossible
to answer unless further clarification is given as to what meaning is really intended
by that question. In more statistical language, (5) means that the support of the two
distributions of all possible performances of the mixing protocols and the congruent
cycling protocols must overlap, with the distribution of performances of the cyclings
having the potentially larger support because of Corollaries 1 and 2.

This universal result within the model class (2) points to one possible reason
for the inconclusive nature of clinical trials performed over the last decade when
evaluating the efficacy of cycling. If such a trial were to be mimicked computation-
ally by simulating a model such as (2), if model parameters are sampled sufficiently
widely one must find an inequality like (5) within the simulated data. Indeed, this
property is observed in Figure 3 computed using a model from [3] where one can
clearly see that the empirical distributions of performances of cycling and mixing
protocols have almost identical supports.

3. Conclusion. It is our contention that the search for effective antibiotic usage
strategies should not be reduced to a straightforward comparison between mix-
ing and rotation protocols. More recent treatment paradigms place the individual
patient at the core of the treatment and, for example, seek to maximise the ap-
propriateness of the drugs prescribed while minimising the duration of empirical
therapy [13]. With these goals in mind, the development of DNA-based rapid se-
quencing tools that aim to reduce the delay in obtaining microbiology results, as
discussed in [14], may prove to be a successful strategy. However, prior models on
which this article is based have not accounted for treatment rationales focused at
the scale of the individual host and say nothing about how the evolution and spread
of pathogens is mediated by those treatments.

In the interests of completeness we highlight the fact that prior mathematical
models designed to compare mixing and cycling strategies do not predict, in a gen-
eral sense that goes beyond particular exemplar models, that protocols allocating
different antibiotics randomly on a per-patient basis is the best method for deploying
those drugs. Despite this, clinical trials designed to evaluate the efficacy of protocols
that increase drug heterogeneity across both hospitals and surgical wards, a prop-
erty associated with random mixing, have had both beneficial [16] and insignificant
outcomes [15] in relation to prior protocols.



ROTATION VERSUS MIXING 931

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

frequency of patients carrying resistant bacteria

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y
/o

b
s
e
rv

e
d
 f
re

q
u
e
n
c
y

Performance distributions of cyclings and mixings (T=50)

 

 

cycling

mixing

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

frequency of patients carrying resistant bacteria

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y
/o

b
s
e
rv

e
d
 f
re

q
u
e
n
c
y

Performance distributions of cyclings and mixings (T=200)

 

 

cycling

mixing

(b)

Figure 3. Two histograms comparing the distribution of perfor-
mances of mixing protocols and a sample of the congruent cycling
protocols determined using the mathematical model given in [3];
the same parameters are used in both plots except that (A) T =
50 and (B) T= 200 time units. Note, consistent with the theoreti-
cal results given in the text, the support of the mixing distribution
lies either on or within the cycling distribution in both cases.

We certainly agree with Bonhoeffer et al. that the last word on the nature
of the theoretically optimal antibiotic deployment protocol has not been spoken.
This is a difficult theoretical and practical problem and we hope that no avenue of
investigation will be set aside when searching for measures to combat the scourge
of antibiotic resistance.
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Appendix A. Notation. Throughout, a dot (·) denotes the usual Euclidean dot
product and we refer throughout to the following spaces, defined informally within
the text. Here T > 0 is a fixed constant and, as is standard, a.e. means ‘Lebesgue
almost everywhere’. If we begin with the space of T -periodic functions

PerT := {u ∈ L∞((−∞,∞),Rn) : u(t+ T ) = u(t) for a.e. t ∈ (−∞,∞)},

we can define a space of T/n-periodic functions, for integers n ≥ 1,

Pern,T := {v(t) ∈ L∞([0, T ],Rn) : v(t) = u(nt) for some u ∈ PerT ,

some n ≥ 1 and for all t ∈ [0, T ]},

and finally Per :=
⋃
n≥1 Pern,T . Now define

• BB := {u ∈ L∞([0, T ],Rn) : such that u(t) ∈ {0, 1} for a.e. t ∈ [0, T ]},
• Cyc := BB ∩ Per which is the set of congruent cycling protocols and
• Mix := {u ∈ L∞([0, T ],Rn) : ∃c ∈ [0, 1] such that u(t) = c for a.e. t ∈ [0, T ]}.

Note a slight oddity according to these definitions: the functions A(t) = 0 and
A(t) = 1 whereby only one of the drugs are used are both designated as cycling and
mixing protocols.

Appendix B. An Essential Mathematical Result. In common with standard
terminology, we say that a sequence of functions (un) ⊂ L∞([0, T ],Rn) converges
weak∗ to u if

lim
n→∞

∫ T

0

ϕ(t) · un(t)dt =
∫ T

0

ϕ(t) · u(t)dt

for all ϕ ∈ L1([0, T ],Rn) and we write un
∗
⇀ u as n→∞.

Assume that F (·), Ga(·) and Gb(·) are smooth functions and that there is a K
independent of A such that for any solution of (2), there results (in any finite
dimensional norm) lim supt→∞ ‖y(t)‖ ≤ K.

Theorem B.1. The mapping P : L∞([0, T ],Rn) → R defined in (4) is a contin-
uous functional with respect to weak∗ convergence and for each m ∈ Mix there is

http://arxiv.org/pdf/math/0210293v1
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a sequence (cn) ⊂ Cyc such that cn
∗
⇀ m as n → ∞. There is an optimal mixing

protocol and a worst mixing protocol, namely values m,m ∈ [0, 1] such that

P(m) = min
0≤m≤1

P(m) and P(m) = max
0≤m≤1

P(m).

Proof. The first part follows almost immediately from, for example, [12, Theorem
1], the weak∗ continuity of P(·) with respect to A ∈ L∞([0, T ],Rn) stemming from
the form of (2) as a smooth differential equation defined affinely with respect to A.
The last part follows because the map m 7→ P(m) is a continuous function defined
on the interval [0, 1] and so achieves its extreme values.

Appendix C. Construction of Figure 3. To generate Figure 3 we constructed
an approximation of the probability density function of the performances of mix-
ing protocols numerically directly from the performance locus {P(m) : 0 ≤ m ≤
1}. For the cycling protocols we first defined a set of periods ρ := T/N where
N = 1, ..., 30 are integers, we then defined τ1 := tρ and τ2 := (1 − t)ρ where t =
0/M, 1/M, 2/M, ...,M/M = 1, so that τ1 +τ2 = ρ, we finally set M = 100. The per-
formances of the 3,030 different congruent cycling protocols: D := {P(A(τ1, τ2)) :
τ1 = tρ, τ2 = (1 − t)ρ, ρ = T/N,N = 1, ..., 30, t = 0, 1/100, ..., 1} were then binned
(using 25 bins) with the histc command in Matlab. If the choice of time units as
days and other parameter values given in [3, 1] could be justified from empirical
data, some of the cycling protocols used to form D could be eliminated as clinically
impractical.
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