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Periodic homogenization of a pseudo-parabolic
equation via a spatial-temporal decomposition

Arthur. J. Vromans and Fons van de Ven and Adrian Muntean

Abstract Pseudo-parabolic equations have been used to model unsaturated fluid
flow in porous media. In this paper it is shown how a pseudo-parabolic equa-
tion can be upscaled when using a spatio-temporal decomposition employed in the
Peszyńska-Showalter-Yi paper [8]. The spatial-temporal decomposition transforms
the pseudo-parabolic equation into a system containing an elliptic partial differential
equation and a temporal ordinary differential equation. To strengthen our argument,
the pseudo-parabolic equation has been given advection/convection/drift terms. The
upscaling is done with the technique of periodic homogenization via two-scale con-
vergence. The well-posedness of the extended pseudo-parabolic equation is shown
as well. Moreover, we argue that under certain conditions, a non-local-in-time term
arises from the elimination of an unknown.
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1 Introduction

Groundwater recharge and pollution prediction for aquifers need models for describ-
ing unsaturated fluid flow in porous media. Pseudo-parabolic equations were found
to be adequate models, see eqn. 25 in [3]. In [8] a spatial-temporal decomposition
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of a pseudo-parabolic system was introduced. It was shown that this decomposition
made upscaling of this system rather straightforward in several classical situations
such as vanishing time-delay and double-porosity systems. In [8] a toy pseudo-
parabolic model was derived from a balance equation describing flow through a
partially saturated porous medium. In our framework, a convective term that was
dropped in [8], is retained in order to show that this term yields no additional prob-
lems for upscaling with the spatial-temporal decomposition. We want to convey the
message that this decomposition can be applied not only to the physical system in
[8] but also to other physical systems with pseudo-parabolic equations, such as the
concrete corrosion reaction model introduced in [9]. Both these pseudo-parabolic
systems are physical systems on a spatial micro scale with an intrinsic microscopic
periodicity of size ε� 1. Similar intrinsic microscopic periodic behaviors are found
in highly active research fields using composite structures or nano-structures.

In this paper, we use this spatial-temporal decomposition to upscale our pseudo-
parabolic equation by using the concept of periodic homogenization via two-scale
convergence, which leads to a homogenized system that retains the spatial-temporal
decomposition. We start in Section 2 with formulating our pseudo-parabolic system
(Qε ), the decomposition system (Pε ) and stating our assumptions. In Section 3, an
existence and uniqueness result for weak solutions to our problem (Pε ) is derived. In
Section 4, we apply the idea of two-scale convergence to a weak version of problem
(Pε ), denoted (Pε

w), that contains the microscopic information at the ε-level. Further-
more in this section, an upscaled system (P0

w) of the weak system (Pε
w) is derived

in the limit ε ↓ 0, and, under certain conditions, an upscaled strong system (P0
s ) is

obtained after eliminating several variables. This upscaled strong system contains
a non-local-in-time term, but the system has lost the partial differential equation
framework as a consequence. Contrary, the upscaled weak system (P0

w) keeps the
partial differential equation framework due to the spatial-temporal decomposition.

2 Basic system and assumptions

Our pseudo-parabolic system (Qε ) consists of a family of N partial differential equa-
tions for the variable vector Uε(t,x,x/ε) = (Uε

1 , . . . ,U
ε
α , . . . ,U

ε
N) with t > 0 and

x = (x1, . . . ,xi, . . . ,xd)∈Ω ⊂Rd . For ε ∈ (0,ε0) with ε0 > 0, system (Qε ) is formu-
lated as

(Qε )


MεG−1

∂tUε −∇ ·
(
(Eε ·∇+Dε)G−1(∂tUε +LUε)

)
= Hε +(Kε −MεG−1L)Uε +Jε ·∇Uε on R+×Ω ,

Uε = U∗ on {0}×Ω ,

∂tUε +LUε = 0 on R+×∂Ω .



Upscaling of pseudo-parabolic equation via spatial-temporal decomposition 3

The vectors Vε and Uε are both functions of the time coordinate t, the global or
macro position coordinate x, and also periodic functions of the micro (or nano) co-
ordinate y ∈Y , where y = x/ε , where the size of the micro domain Y is O(ε) of the
size of the macro domain Ω .
Our dimensionless decomposition system (Pε ) consists of a family of N partial dif-
ferential equations (PDEs) and a family of N ordinary differential equations (ODEs)
for the two variable vectors Vε(t,x,x/ε) = (V ε

1 , . . . ,V
ε
α , . . . ,V

ε
N ) and Uε(t,x,x/ε).

For ε ∈ (0,ε0) with ε0 > 0, it is formulated as

(Pε )


Mε Vε −∇ · (Eε ·∇Vε +Dε Vε) = Hε +Kε Uε +Jε ·∇Uε on R+×Ω ,

∂tUε +LUε = GVε on R+×Ω ,

Uε = U∗ on {0}×Ω ,

Vε = 0 on R+×∂Ω .

Above, the ε-dependent notation cε(t,x) = c(t,x,x/ε) is used for the ε-independent
1-,2- and 3-tensors of assumption (A1).

(A1) For all α,β ∈ {1, . . . ,N} and for all i, j ∈ {1, . . . ,d}, we have

Mαβ , Ei j, Diαβ , Hα , Kαβ , Jiαβ ∈ L∞(R+×Ω ;C#(Y )),
Lαβ , Gαβ ∈ L∞(R+;W 1,∞(Ω)),

U∗ ∈ C1(Ω)N ,

with G invertible.
(A2) Let the tensors Mε and Eε be in diagonal form1 with elements mε

α > 0 and
eε

i > 0, respectively, satisfying 1/mε
α ,1/eε

i ∈ L∞(R+×Ω ;C#(Y )).
(A3) The inequality

‖Dε

iβα
‖2

L∞(R+×Ω ε ;C#(Y ))
<

4
dN2‖1/mε

α‖L∞(R+×Ω ε ;C#(Y ))

∥∥1/eε
i

∥∥
L∞(R+×Ω ε ;C#(Y ))

holds for all α,β ∈ {1, . . . ,N}, for all i ∈ {1, . . . ,n}, and for all ε ∈ (0,ε0).

Remark, inequality (2) implies that automatically (2) holds for the Y -averaged func-
tions Dε

iβα
, Mε

βα
, and Eε

i j in L∞(R+×Ω), using |Y | f (t,x) =
∫

Y f (t,x,y)dy.

3 Existence and uniqueness of weak solutions to (Pε
w)

In this section, we show the existence and uniqueness of a weak solution (U,V)
to (Pε ). We define a weak solution to (Pε ) for ε ∈ (0,ε0) and T ∈ R+ as a pair of

1 Due to the Theorem of Jacobi about quadratic forms (cf. [4]) in combination with the coercivity
of both Mε and Eε , we are allowed to assume diagonal forms of Mε and Eε as the orthogonal
transformations, necessary to put their quadratic forms in diagonal form, modify the domain Ω ε

and the coefficients of Dε , Hε , Kε and Jε without changing their regularity.
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sequences (Uε ,Vε) ∈ H1((0,T )×Ω)N×L∞((0,T ),H1
0 (Ω))N satisfying

(Pε
w)



∫
Ω

φ
> [Mε Vε−Hε−Kε Uε−Jε ·∇Uε ]+(∇φ)>·(Eε·∇Vε+Dε Vε)dx=0,∫

Ω

ψ
> [∂tUε +Lε Uε −Gε Vε ]dx = 0,

Uε(0,x) = U∗(x) for all x ∈Ω ,

for a.e. t ∈ (0,T ), for all test-functions φ ∈ H1
0 (Ω)N and ψ ∈ L2(Ω)N .

The existence and uniqueness can only hold when the first equation of (Pε
w) sat-

isfies all the conditions of Lax-Milgram. The next lemma provides the coercivity
condition, while the continuity condition is trivially satisfied.

Lemma 1. Assume assumptions (A1) - (A3) hold, then there exist positive constants
m̃α , ẽi, H̃, K̃α , J̃iα for α ∈ {1, . . . ,N} and i ∈ {1, . . . ,d} such that the following
a-priori estimate holds for a.e. t ∈ (0,T ).

N

∑
α=1

m̃α‖Vε
α‖2

L2(Ω) +
d

∑
i=1

N

∑
α=1

ẽi‖∂xiV
ε
α‖2

L2(Ω)

≤ H̃ +
N

∑
α=1

K̃α‖Uε
α‖2

L2(Ω)+
d

∑
i=1

N

∑
α=1

J̃iα‖∂xiU
ε
α‖2

L2(Ω) (1)

Proof. See pages 92, 93 in [9] for proof and relation with parameters of (Pε
w). ut

Theorem 1. Assume assumptions (A1) - (A3) hold, then there exists a unique pair
(Uε ,Vε) ∈ H1((0,T )×Ω)N × L∞((0,T ),H1

0 (Ω))N such that (Uε ,Vε) is a weak
solution to (Pε

w).

Proof. Use φ = Vε and apply Lemma 1. Then use ψ ∈ {Uε ,∂tUε}. Moreover, ap-
ply a gradient to the second equation of (Pε ) and test that equation with ∇Uε and
∂t∇Uε . Application of Young’s inequality, use of (1) and application of Gronwall’s
inequality, see [2, Thm. 1], yields the existence for Uε . Then Lax-Milgram yields the
existence for Vε . Uniqueness follows from the bilinearity of (Pε

w). For more details,
see pages 93 and 94 in [9]. ut

4 Upscaling the system (Pε
w) via two-scale convergence

Based on two-scale convergence, see [1], [5], [7] for details, we obtain the following
Lemma ensuring that the weak solution to problem (Pε

w) has two-scale limits in the
limit ε ↓ 0.

Lemma 2. Assume assumptions (A0), (A1), (A2) to hold. For each ε ∈ (0,ε0), let
the pair of sequences (Uε ,Vε)∈H1((0,T )×Ω)×L∞((0,T );H1

0 (Ω)) be the unique
weak solution to (Pε

w). Then this sequence of weak solutions satisfies the estimate
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‖Uε‖H1((0,T )×Ω)N +‖Vε‖L∞((0,T ),H1
0 (Ω))N ≤C, for all ε ∈ (0,ε0) and there exist vec-

tor functions

u in H1((0,T )×Ω)N , U in H1((0,T );L2(Ω ;H1
# (Y )/R))N ,

v in L∞((0,T );H1
0 (Ω))N , V in L∞((0,T )×Ω ;H1

# (Y )/R)N ,

and a subsequence ε ′ ⊂ ε , for which the following two-scale convergences

Uε ′ 2−→ u(t,x), ∇Uε ′ 2−→ ∇u(t,x)+∇yU (t,x,y),
∂tUε ′ 2−→ ∂tu(t,x), ∂t∇Uε ′ 2−→ ∂t∇u(t,x)+∂t∇yU (t,x,y),

Vε ′ 2−→ v(t,x), ∇Vε ′ 2−→ ∇v(t,x)+∇yV (t,x,y)

hold for a.e. t ∈ (0,T ).

Proof. See pages 95 and 96 of [9]. ut

Using Lemma 2, we upscale (Pε
w) to (P0

w) via two-scale convergence.

Theorem 2. Assume the conditions of Lemma 2 are met. Then the two-scale limits
u∈H1((0,T )×Ω)N , U ∈H1((0,T );L2(Ω ;H1

# (Y )/R))N and v∈L∞((0,T );H1
0 (Ω))N

introduced in Lemma 2 form the weak solution triple to

(P0
w)



∫
Ω

φ
>
[
Mv−H−Ku−J ·∇u− 1

|Y |

∫
Y
J ·∇yU dy

]
+(∇φ)> · (E∗ ·∇v+D∗v)dx = 0,∫

Ω

ψ
> [∂tu+Lu−Gv]dx = 0,∫

Y
ξ
> ·∇y

[
∂tU +LU − δ̃v− ω̃ ·∇v

]
dy = 0,

u(0,x) = U∗(x) on Ω ,

∇yU (0,x,y) = 0 on Ω ×Y,

for a.e. t ∈ (0,T ), for all test-functions φ ∈ H1
0 (Ω)N , ψ ∈ L2(Ω)N , and ξ ∈

H1
# (Y )

d×N , where the effective coefficients E∗ and D∗ are given by

E∗ =
1
|Y |

∫
Y
E · (1+∇yW)dy, D∗ =

1
|Y |

∫
Y
D+E ·∇yδdy,

δ̃ = ∇y(Gδ ), ω̃ = ∇yW⊗G,

and the tensor δαβ ∈ L∞((0,T )×Ω ;H1
# (Y )/R)) and vector Wi ∈ L∞((0,T )×

Ω ;H1
# (Y )/R)) satisfy the cell problems

0 =
∫

Y
Φ
> · (∇y · [E · (1+∇yW)])dy, 0 =

∫
Y

Ψ
>(∇y · [D+E ·∇yδ ])dy

for all Φ ∈C#(Y )d , Ψ ∈C#(Y )N×N .
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Proof. In (Pε
w), we choose φ = φ ε = Φ

(
t,x, x

ε

)
and ψ = ψε =Ψ(t,x)+εϕ

(
t,x, x

ε

)
for the test-functions Φ ∈ L2((0,T );D(Ω ;C∞

# (Y )))
N , Ψ ∈ L2((0,T );C∞

0 (Ω))N and
for ϕ ∈ L2((0,T );D(Ω ;C∞

# (Y )))
N . Two-scale convergence limits, see [1], [5], [7],

and cell-function arguments, see [6], give (P0
w). Details in pages 97,98 of [9]. ut

We have shown that upscaling system (Pε
w) yields system (P0

w). This system con-
tains only PDEs with respect to (t,x). However, an extra variable ∇yU was needed.
Removing ∇yU needs the use of continuous semi-group theory, see papers 10 and
14 of [10], for solving the third equation of system (P0

w). This leads to a non-local-
in-time term as a consequence of removing ∇yU .

5 Conclusion

Our main goal of this paper is to show that the spatial-temporal decomposition, as
employed in [8], allows for the straighforward upscaling of pseudo-parabolic equa-
tions, in specific for system (Qε ). The upscaling procedure is here performed using
the concept of two-scale convergence as reported in Section 4. Moreover, the de-
composition is retained in the upscaled limit. A non-local-in-time term arose when
an extra variable was eliminated. The spatial-temporal decoupling showed why this
non-local term is non-local in time.
In future research we intend to investigate the applicability of the spatial-temporal
decomposition of our pseudo-parabolic system to perforated periodic domains, cor-
rector estimates (convergence speed estimate) and high-contrast situations.
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