45 research outputs found

    Semi-solid wire-feed additive manufacturing of AlSi7Mg by direct induction heating

    Get PDF
    In this study, a novel process is presented in which direct induction heating with frequencies in the MHz range is used for the wire-feed additive manufacturing of the alloy AlSi7Mg. The high frequency of 1.5 MHz enables processing of 1.2 mm diameter wires without the need for indirect heating via a nozzle. The feasibility of the process is proven by the experimental identification of a proper process window regarding the influential parameters such as the distance between inductor and substrate, induction power and wire feed rate for the fabrication of single layers. Furthermore, a strategy for the successful fabrication of multi-layered cubes is developed. The microstructure of the cubes exhibits a characteristic variation along the build direction. Micro-computed tomography is used to reveal defects like lack of fusion and spherical pores in test cubes. The presented results are used to derive possible process improvements, which will allow the novel process to be used as a fast and powder-free alternative metal additive manufacturing route in future

    Potential Role of CXCR4 Targeting in the Context of Radiotherapy and Immunotherapy of Cancer

    Get PDF
    Cancer immunotherapy has been established as standard of care in different tumor entities. After the first reports on synergistic effects with radiotherapy and the induction of abscopal effects—tumor shrinkage outside the irradiated volume attributed to immunological effects of radiotherapy—several treatment combinations have been evaluated. Different immunotherapy strategies (e.g., immune checkpoint inhibition, vaccination, cytokine based therapies) have been combined with local tumor irradiation in preclinical models. Clinical trials are ongoing in different cancer entities with a broad range of immunotherapeutics and radiation schedules. SDF-1 (CXCL12)/CXCR4 signaling has been described to play a major role in tumor biology, especially in hypoxia adaptation, metastasis and migration. Local tumor irradiation is a known inducer of SDF-1 expression and release. CXCR4 also plays a major role in immunological processes. CXCR4 antagonists have been approved for the use of hematopoietic stem cell mobilization from the bone marrow. In addition, several groups reported an influence of the SDF-1/CXCR4 axis on intratumoral immune cell subsets and anti-tumor immune response. The aim of this review is to merge the knowledge on the role of SDF-1/CXCR4 in tumor biology, radiotherapy and immunotherapy of cancer and in combinatorial approaches

    Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems : a review

    Get PDF
    Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.Peer reviewe

    Ion Channels in Brain Metastasis

    No full text
    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial–mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood–brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation

    Justification of disintegration testing beyond current FDA criteria using in vitro and in silico models

    No full text
    Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer–Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible

    Cellular Effects of the Antiepileptic Drug Valproic Acid in Glioblastoma

    No full text
    Background/Aims: Valproic acid (VPA), an anticonvulsant and mood-stabilizing drug is used to treat epileptic seizure of glioblastoma patients. Besides its antiepileptic activity, VPA has been attributed further functions that improve the clinical outcome of glioblastoma patients. Those comprise the inhibition of some histone deacetylase (HDAC) isoforms which reportedly may result in radiosensitization. Retrospective analysis of patient data, however, could not unequivocally confirm a prolonged survival of glioblastoma patients receiving VPA. The present study aimed to identify potential VPA targets at the cellular level. Methods: To this end, the effect of VPA on metabolism, Ca2+-, biochemical and electro-signaling, cell-cycling, clonogenic survival and transfilter migration was analyzed in three human glioblastoma lines (T98G, U-87MG, U251) by MTT assay, Ca2+ imaging, immunoblotting, patch-clamp recording, flow cytometry, delayed plating colony formation and modified Boyden chamber assays, respectively. In addition, the effect of VPA on clonogenic survival of primary glioblastoma spheroid cultures treated with temozolomide and fractionated radiation was assessed by limited dilution assay. Results: In 2 of 3 glioblastoma lines, clinical relevant concentrations of VPA slightly slowed down cell cycle progression and decreased clonogenic survival. Furthermore, VPA induced Ca2+ signaling which was accompanied by pronounced K+ channel activity and transfilter cell migration. VPA did not affect metabolic NAD(P)H formation or radioresistance of the glioblastoma lines. Finally, VPA did not impair clonogenic survival or radioresistance of temozolomide-treated primary spheroid cultures. Conclusions: Combined, our in vitro data do not propose a general use of VPA as a radiosensitizer in anti-glioblastoma therapy

    Role of ion channels in ionizing radiation-induced cell death

    Get PDF
    AbstractNeoadjuvant, adjuvant or definitive fractionated radiation therapy are implemented in first line anti-cancer treatment regimens of many tumor entities. Ionizing radiation kills the tumor cells mainly by causing double strand breaks of their DNA through formation of intermediate radicals. Survival of the tumor cells depends on both, their capacity of oxidative defense and their efficacy of DNA repair. By damaging the targeted cells, ionizing radiation triggers a plethora of stress responses. Among those is the modulation of ion channels such as Ca2+-activated K+ channels or Ca2+-permeable nonselective cation channels belonging to the super-family of transient receptor potential channels. Radiogenic activation of these channels may contribute to radiogenic cell death as well as to DNA repair, glucose fueling, radiogenic hypermigration or lowering of the oxidative stress burden. The present review article introduces these channels and summarizes our current knowledge on the mechanisms underlying radiogenic ion channel modulation. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers
    corecore