416 research outputs found

    Object Tracking from Unstabilized Platforms by Particle Filtering with Embedded Camera Ego Motion

    Get PDF
    Visual tracking with moving cameras is a challenging task. The global motion induced by the moving camera moves the target object outside the expected search area, according to the object dynamics. The typical approach is to use a registration algorithm to compensate the camera motion. However, in situations involving several moving objects, and backgrounds highly affected by the aperture problem, image registration quality may be very low, decreasing dramatically the performance of the tracking. In this work, a novel approach is proposed to successfully tackle the tracking with moving cameras in complex situations, which involve several independent moving objects. The key idea is to compute several hypotheses for the camera motion, instead of estimating deterministically only one. These hypotheses are combined with the object dynamics in a Particle Filter framework to predict the most probable object locations. Then, each hypothetical object location is evaluated by the measurement model using a spatiogram, which is a region descriptor based on color and spatial distributions. Experimental results show that the proposed strategy allows to accurately track an object in complex situations affected by strong ego motion

    Robust automatic target tracking based on a Bayesian ego-motion compensation framework for airborne FLIR imagery

    Get PDF
    Automatic target tracking in airborne FLIR imagery is currently a challenge due to the camera ego-motion. This phenomenon distorts the spatio-temporal correlation of the video sequence, which dramatically reduces the tracking performance. Several works address this problem using ego-motion compensation strategies. They use a deterministic approach to compensate the camera motion assuming a specific model of geometric transformation. However, in real sequences a specific geometric transformation can not accurately describe the camera ego-motion for the whole sequence, and as consequence of this, the performance of the tracking stage can significantly decrease, even completely fail. The optimum transformation for each pair of consecutive frames depends on the relative depth of the elements that compose the scene, and their degree of texturization. In this work, a novel Particle Filter framework is proposed to efficiently manage several hypothesis of geometric transformations: Euclidean, affine, and projective. Each type of transformation is used to compute candidate locations of the object in the current frame. Then, each candidate is evaluated by the measurement model of the Particle Filter using the appearance information. This approach is able to adapt to different camera ego-motion conditions, and thus to satisfactorily perform the tracking. The proposed strategy has been tested on the AMCOM FLIR dataset, showing a high efficiency in the tracking of different types of targets in real working conditions

    Automatic Feature-Based Stabilization of Video with Intentional Motion through a Particle Filter

    Get PDF
    Video sequences acquired by a camera mounted on a hand held device or a mobile platform are affected by unwanted shakes and jitters. In this situation, the performance of video applications, such us motion segmentation and tracking, might dramatically be decreased. Several digital video stabilization approaches have been proposed to overcome this problem. However, they are mainly based on motion estimation techniques that are prone to errors, and thus affecting the stabilization performance. On the other hand, these techniques can only obtain a successfully stabilization if the intentional camera motion is smooth, since they incorrectly filter abrupt changes in the intentional motion. In this paper a novel video stabilization technique that overcomes the aforementioned problems is presented. The motion is estimated by means of a sophisticated feature-based technique that is robust to errors, which could bias the estimation. The unwanted camera motion is filtered, while the intentional motion is successfully preserved thanks to a Particle Filter framework that is able to deal with abrupt changes in the intentional motion. The obtained results confirm the effectiveness of the proposed algorith

    Aerial moving target detection based on motion vector field analysis

    Get PDF
    An efficient automatic detection strategy for aerial moving targets in airborne forward-looking infrared (FLIR) imagery is presented in this paper. Airborne cameras induce a global motion over all objects in the image, that invalidates motion-based segmentation techniques for static cameras. To overcome this drawback, previous works compensate the camera ego-motion. However, this approach is too much dependent on the quality of the ego-motion compensation, tending towards an over-detection. In this work, the proposed strategy estimates a robust motion vector field, free of erroneous vectors. Motion vectors are classified into different independent moving objects, corresponding to background objects and aerial targets. The aerial targets are directly segmented using their associated motion vectors. This detection strategy has a low computational cost, since no compensation process or motion-based technique needs to be applied. Excellent results have been obtained over real FLIR sequences

    Robust 3D People Tracking and Positioning System in a Semi-Overlapped Multi-Camera Environment

    Get PDF
    People positioning and tracking in 3D indoor environments are challenging tasks due to background clutter and occlusions. Current works are focused on solving people occlusions in low-cluttered backgrounds, but fail in high-cluttered scenarios, specially when foreground objects occlude people. In this paper, a novel 3D people positioning and tracking system is presented, which shows itself robust to both possible occlusion sources: static scene objects and other people. The system holds on a set of multiple cameras with partially overlapped fields of view. Moving regions are segmented independently in each camera stream by means of a new background modeling strategy based on Gabor filters. People detection is carried out on these segmentations through a template-based correlation strategy. Detected people are tracked independently in each camera view by means of a graph-based matching strategy, which estimates the best correspondences between consecutive people segmentations. Finally, 3D tracking and positioning of people is achieved by geometrical consistency analysis over the tracked 2D candidates, using head position (instead of object centroids) to increase robustness to foreground occlusions

    The Global Automotive Industry Stock Returns During the COVID-19 Pandemic

    Get PDF
    The Global Automotive Industry Stock Returns During the COVID-19 Pandemic mundial durante la pandemia de COVID-19Este estudio analiza la relación de los puntajes ESG a nivel de empresa y los rendimientos de las acciones de una base de datos mundial para la industria automotriz. Mide la importancia de la relación ESG y CFP durante la última década, e incluye una comparación de aquellas empresas con diferentes niveles de puntaje ESG, así como entre empresas con puntuaciones ESG y empresas que carecen de dichas puntuaciones. Se estiman un modelo cuasi-experimental de diferencia en diferencias (DID) y un panel de datos para examinar el impacto de las puntuaciones ESG y las puntuaciones combinadas ESG en el rendimiento de las acciones de las empresas antes y durante el período de pandemia de COVID-19. Los resultados sugieren que las acciones sostenibles durante la pandemia disminuyeron los rendimientos de las acciones, como lo indican los coeficientes negativos de las puntuaciones ESGC y ESG. Los términos de interacción con el tamaño de la empresa revelaron que los puntajes ESGC y ESG tuvieron una relación positiva con los rendimientos de las acciones durante la pandemia. Por lo tanto, los rendimientos de las empresas más grandes se beneficiaron de puntuaciones ESG más altas durante la crisis de COVID-19. La rentabilidad de las acciones de las empresas en la muestra estratificada, en el contexto de la emergencia sanitaria de la COVID-19, es una contribución original a la literatura sobre la relación ESG-CFP.This study analyzes the relationship of firm-level ESG scores and stock returns from a worldwide database for the automotive industry. It measures the significance of the ESG and CFP relationship during the last decade, and includes a comparison of those firms with different levels of ESG scores, as well as between firms with ESG scores and to firms that lack such scores. A quasi-experimental difference-in-differences (DID) design and a panel data are estimated to examine the impact of ESG scores and ESG combined scores on firms’ stock return before and during the COVID-19 pandemic period. The results suggest that sustainable actions during the pandemic lessened stock returns, as evidenced by the negative coefficients of the ESGC and ESG scores. The interaction terms with firm size, revealed that ESGC and ESG scores had a positive relationship with stock returns during the pandemic. Thus, larger firms’ returns benefited from higher ESG scores during the COVID-19 crisis. The performance of the stratified sample firms’ stock returns in the context of the COVID-19 sanitary emergency is an original contribution to the literature on the ESG-CFP relationship

    Target Detection through Robust Motion Segmentation and Tracking Restrictions in Aerial FLIR images

    Get PDF
    An efficient automatic moving target detection and tracking system in airborne forward looking infrared (FLIR) imagery is presented in this paper. Due to camera ego-motion, these detection and tracking tasks are challenging problems. Besides, previously proposed techniques are not suitable for aerial images, as the predominant regions are non-textured. The proposed system efficiently estimates not only the camera motion but also the target motion, by means of an accurate motion vector field computation and robust motion parameters estimation technique. This information allows accurately to segment each target, and tracking them with ego-motion compensation. Verification of tracking restrictions helps detecting true targets while reducing very significantly the false alarm rate. Excellent results have been obtained over real FLIR sequences

    Motion estimation through efficient matching of a reduced number of reliable singular points

    Get PDF
    Motion estimation in video sequences is a classical intensive computational task that is required for a wide range of applications. Many different methods have been proposed to reduce the computational complexity, but the achieved reduction is not enough to allow real time operation in a non-specialized hardware. In this paper an efficient selection of singular points for fast matching between consecutive images is presented, which allows to achieve real time operation. The selection of singular points lies in finding the image points that are robust to the noise and the aperture problem. This is accomplished by imposing restrictions related to the gradient magnitude and the cornerness. The neighborhood of each singular point is characterized by a complex descriptor vector, which presents a high robustness to illumination changes and small variations in the 3D camera viewpoint. The matching between singular points of consecutive images is performed by maximizing a similarity measure based on the previous descriptor vector. The set of correspondences yields a sparse motion vector field that accurately outlines the image motion. In order to demonstrate the efficiency of this approach, a video stabilization application has been developed, which uses the sparse motion vector field as input. Excellent results have been obtained in synthetic and real sequences, demonstrating the efficiency of the proposed motion estimation technique

    Automatic aerial target detection and tracking system in airborne FLIR images based on efficient target trajectory filtering

    Get PDF
    Common strategies for detection and tracking of aerial moving targets in airborne Forward-Looking Infrared (FLIR) images offer accurate results in images composed by a non-textured sky. However, when cloud and earth regions appear in the image sequence, those strategies result in an over-detection that increases very significantly the false alarm rate. Besides, the airborne camera induces a global motion in the image sequence that complicates even more detection and tracking tasks. In this work, an automatic detection and tracking system with an innovative and efficient target trajectory filtering is presented. It robustly compensates the global motion to accurately detect and track potential aerial targets. Their trajectories are analyzed by a curve fitting technique to reliably validate real targets. This strategy allows to filter false targets with stationary or erratic trajectories. The proposed system makes special emphasis in the use of low complexity video analysis techniques to achieve real-time operation. Experimental results using real FLIR sequences show a dramatic reduction of the false alarm rate, while maintaining the detection rate

    Advanced background modeling with RGB-D sensors through classifiers combination and inter-frame foreground prediction

    Get PDF
    An innovative background modeling technique that is able to accurately segment foreground regions in RGB-D imagery (RGB plus depth) has been presented in this paper. The technique is based on a Bayesian framework that efficiently fuses different sources of information to segment the foreground. In particular, the final segmentation is obtained by considering a prediction of the foreground regions, carried out by a novel Bayesian Network with a depth-based dynamic model, and, by considering two independent depth and color-based mixture of Gaussians background models. The efficient Bayesian combination of all these data reduces the noise and uncertainties introduced by the color and depth features and the corresponding models. As a result, more compact segmentations, and refined foreground object silhouettes are obtained. Experimental results with different databases suggest that the proposed technique outperforms existing state-of-the-art algorithms
    corecore