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ABSTRACT

Common strategies for detection and tracking of aerial moving targets in airborne Forward-Looking Infrared
(FLIR) images offer accurate results in images composed by a non-textured sky. However, when cloud and
earth regions appear in the image sequence, those strategies result in an over-detection that increases very
significantly the false alarm rate. Besides, the airborne camera induces a global motion in the image sequence
that complicates even more detection and tracking tasks. In this work, an automatic detection and tracking
system with an innovative and efficient target trajectory filtering is presented. It robustly compensates the
global motion to accurately detect and track potential aerial targets. Their trajectories are analyzed by a curve
fitting technique to reliably validate real targets. This strategy allows to filter false targets with stationary or
erratic trajectories. The proposed system makes special emphasis in the use of low complexity video analysis
techniques to achieve real-time operation. Experimental results using real FLIR sequences show a dramatic
reduction of the false alarm rate, while maintaining the detection rate.
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1. INTRODUCTION

An automatic target detection and tracking system (ATDT) focused on aerial targets for FLIR imagery, acquired
in a airborne camera, is addressed in this paper. This scenario presents several difficulties such as unpredictable
camera motion (called global motion or ego-motion), special characteristics of aerial images, and the reduced
size and motion of aerial targets. Camera ego-motion distorts spatiotemporal correlation between consecutive
images, increasing the difficulty of tracking and detection tasks based on motion strategies. On the other hand,
the background of aerial images is mainly composed by non-textured sky regions, also cloud and earth regions
appear, which are sources of static and dynamic clutter that can be detected as targets. Besides, the reduced
size and motion of aerial targets, because of the long distance between camera and targets, reduces the detection
performance and increases the false alarm rate.

Most of the works address each task, detection and tracking, independently along with a method to com-
pensate or limit the ego-motion effect. In [1]-[2] motion-based segmentation schemes with a previous ego-motion
compensation stage are presented, but their approach tends to produce an over-detection. Besides, the high
complexity of the ego-motion compensation approaches used in these works limits their applicability in real-time
systems. To solve this problem, [3] employs a multi-resolution pyramid to reduce the computational burden.
In [4]-[5] similar ego-motion compensation schemes are used when target tracking fails because of large camera
displacements, but there is not any feedback to the detection stage. Others works, as in [6], expand the target
search area in the tracking process to alleviate the camera ego-motion without using any explicit compensation
technique. But, this approach lacks flexibility and its computational burden increases with the size of the search
area.

In this paper an ATDT system is presented, which achieves exceptional results by refining the detection
process through a novel target trajectory filtering strategy. Moreover, it keeps real time requirement by means
of the use of a low complexity motion compensation technique. The system estimates local motion through
a fast selective-search block-matching algorithm, which is used to infer global motion by means of a robust
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Figure 1. System block diagram.

parameter estimation technique that assumes a restricted-affine motion model [7]. The potential aerial targets
are detected through a combination of gradient and motion segmentation techniques, applied on the global
motion compensated image sequence. Potential targets are tracked using a template correlation technique and
a Kalman filter. Finally, each potential target trajectory is analyzed through a robust curve fitting technique,
filtering those that show no motion o erratic trajectories. Experimental results using real FLIR sequences
demonstrate the efficiency of this strategy, reaching a very low false alarm rate.

This paper has been organized as follows: in Section 2 the ATDT system is described, and each one of its
processing modules is presented independently; experimental results with real FLIR images are presented in
Section 3; and finally conclusions are exposed in Section 4.

2. SYSTEM DESCRIPTION

The system is composed by three main processing modules: Camera Motion Compensation, Potential Target
Detection and Tracking and Target Validation. In short, the description of the system (Fig. 1) is as follows: FLIR
input image sequence is processed by the Camera Motion Compensation module, which accurately estimates a
non-dense motion vector field between consecutive images by means of a fast selective-search block-matching
algorithm. This motion vector field is used to robustly estimate global motion parameters related to the camera,
assuming a restricted affine motion model. Global motion is compensated warping the image according to the
parameters of the motion model previously computed. Potential Target Detection module performs a motion-
based segmentation in parallel with an edge-based segmentation, which are combined to obtain a set of potential
targets. The Tracking and Target Validation module tracks every potential target by means of a template
correlation technique. Resulting trajectories are analyzed using a robust curve fitting technique that filters false
moving targets with erratic or non-linear trajectories and validates the rest of targets.

2.1. Camera Motion Compensation

This module stabilizes the sequence from the unpredictable camera motion, called ego-motion, that arises from
the airborne camera. It is divided into three stages: Local Motion Estimation, Global Motion Estimation and
Global Motion Compensation. In the first stage, local motion is estimated from consecutive images, In−1 and
In, to yield a non-dense motion vector field (MV Fn−1,n) through a low complexity block matching algorithm.

The Global Motion Estimation stage infers global motion, corresponding to the camera, from MV Fn−1,n

using a restricted-affine motion model along with RANSAC [8], a robust parameter estimator. As a result, a
parameter matrix that defines the camera motion is obtained, which is used in the Global Motion Compensation
stage to warp In, stabilizing it respect to In−1.
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2.1.1. Local Motion Estimation

Local motion is estimated from consecutive images, In−1 and In, using a diamond-pattern search block-matching
algorithm [9], adapted to compute only blocks with high reliable motion information.

Block-matching algorithm divides the current image, In, into a matrix of non-overlapped square blocks which
are compared with the corresponding blocks in the previous image, In−1, and its adjacent neighbors located
inside a predefined search area, Sa. The best matching between blocks produces a motion vector that defines the
movement of one block in In with the corresponding one in In−1. The set of estimated motion vectors related
to all the blocks of In constitutes the motion vector field, MV Fn−1,n, that defines the local motion between
In−1 and In. Search area Sa is constrained to a rectangle surrounding the corresponding block in In−1. The
best matching is computed minimizing the mean absolute difference cost function (MAD), whose expression is
given in (1):

MAD(dx, dy) =
1

N2

∑

(x,y)∈B

∣∣In(x, y) − In−1(x + dx, y + dy)
∣∣ (1)

where B is a N × N block and (dx, dy) are the coordinates of each candidate motion vector inside Sa.

To reduce the number of MAD computations, a diamond-pattern search method (DPS) [9] has been used,
instead of an exhaustive search one, allowing to reduce significantly the computational burden. The DPS method
starts evaluating nine locations in Sa which follows a diamond-shape pattern (9DP), see Fig. 2(a), where the
central location is in the centre of Sa. If the location of minimum MAD is not the centrum of the pattern, then
the 9DP is displaced to the location of the minimum MAD, and a new minimum is searched. Since some locations
have just been evaluated before, only is necessary to compute 3 o 5 new locations depending on the position of
the minimum. This process is repeated until the minimum MAD is associated to the central location of the 9DP.
Once this is accomplished, a five location diamond-shape pattern (5DP) is used, see Fig. 2(b). Similarly to the
9DP, the process is repeated until the minimum MAD corresponds to the central location, taking into account
not to compute previous locations. When the minimum MAD is the central location, the search finishes, and
its coordinates are used to generate the corresponding motion vector. In Fig. 2(c) the entire search method is
outlined.

Although in a standard block-matching algorithm each block in In is computed, in the proposed implemen-
tation only blocks whose intensity variance is greater than a threshold Tv are computed. This approach allows
to discard erroneous vectors associated with low-textured regions (regions with low intensity variance), while
dramatically reducing the computational burden, as the aerial FLIR images are predominantly composed by low
textured sky regions.

2.1.2. Global Motion Estimation

Global motion is estimated from MV Fn−1,n using a restricted-affine motion model (RAM), whose parameters
are estimated by means of RANSAC, a robust parameter estimation technique.

Taking into account the long distance between the camera and both targets and background in the aerial
FLIR images under consideration, the projective camera model can be simplified into an orthogonal one [10].
Under this assumption, a restrictive-affine model can be used to model the ego-motion, in which only translations,
rotations and zooms are considered. This motion model is defined by (2):

⎡

⎣
xn−1

yn−1

1

⎤

⎦ =

⎡

⎣
s · cos θ s · sin θ tx
−s · sin θ s · cos θ ty

0 0 1

⎤

⎦ ·
⎡

⎣
xn

yn

1

⎤

⎦ (2)

where s, θ, tx and ty are parameters that describe RAM, which are respectively zoom, angle of rotation, horizontal
translation and vertical translation; and, xn−1, yn−1, xn, yn are the coordinates of a determined pixel in In−1

and In respectively, which are related by RAM.
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Figure 2. (a) Diamond-pattern of nine locations. (b) Diamond-pattern of five locations. (c) Diamond-pattern search
method: circles corresponds to the first step, squares to the second, triangles to the third, hexagons to the fourth and
crosses to the last step, where is located the minimum MAD.

RAM parameters are estimated using RANSAC, a robust iterative parameter estimation technique that
tolerates up to a 50% of outliers, producing accurate estimations. As it is described in [8], RANSAC randomly
selects Nmv motion vectors from the entire set MV Fn−1,n to estimate RAM parameters, P̂RAM , through the
Least Mean Squares algorithm (LMS). These estimated parameters, P̂RAM , are used to compute the number of
inliers in MV Fn−1,n, given a tolerance threshold. If the number of inliers is greater than a threshold, TNin, the
final set of RAM parameters, PRAM , is computed from all inliers. Otherwise, to resolve the problem, another
set of Nmv motion vectors is selected and the entire process is repeated up to a maximum of Nit times. After
Nit iterations, if any set of RAM parameters has been computed, In can not be stabilized, which occurs in cases
of rarely drastic displacement of the camera.

Nmv must be greater or equal than the dimension of the parameter space (in this case Nmv ≥ 2) and to
ensure that al least a set of Nmv motion vectors is free of outliers with a probability Ps, the number of necessary
iterations is computed by (3):

Nit =
log (1 − Ps)

log [1 − (1 − εNmv)]
(3)

where ε the maximum fraction of outliers in MV Fn−1,n.

In absence of drastic ego-motion, a set of restrictive-affine motion parameters that describes the global motion
induced by the camera, PRAM , is obtained for each image In.

2.1.3. Global Motion Compensation

This stage compensates camera motion between In−1 and In computing the expression (2), which uses PRAM

for the warping. Finally, a bilinear interpolation is applied over the non-integers coordinates resulting form the
warping, in order to obtained the compensated image, In

c .

2.2. Potential Target Detection

Potential moving target selection is accomplished in this module through a combination of segmentation tech-
niques. First, a gradient-based segmentation, GSn, extracts both moving and static objects of In

c . In parallel, a
motion-based segmentation, MSn, is carried out to obtain only some regions of moving objects between In−1 and
In
c . Then, combining GSn and MSn, a segmentation of moving objects is achieved, that represents a preliminary

targets detection, PT n.
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2.2.1. Gradient-based Segmentation

In this stage all moving and static objects in In
c are segmented. First, a Canny-based edge detector is used to

obtain edge image, En
c , from In

c . Then, a region extraction from edges technique is performed to obtain objects
bounded by their edges, GSn.

A Canny edge detector has been combined with an automatic gradient histogram thresholding algorithm,
AGHT, [11] to obtain accurately the edges of In

c . AGHT determines optimum Canny hysteresis thresholds ana-
lyzing the probability distribution function of the image gradient magnitude. This follows a Rayleigh distribution
assuming an additive Gaussian noise in the image, whose expression is shown in (4):

R(‖∇In
c ‖) =

‖∇In
c ‖

σ2
· e−‖∇In

c ‖2

2σ2 (4)

where σ is the scale parameter that is determined fitting a Rayleigh function to the image gradient histogram
by means of the maximum likelihood parameter estimation technique. From this parameter, the high and low
Canny hysteresis thresholds, TH and TL respectively, are computed as in (5):

TH = σ
√−2 ln (PF )

TL = 0.6 · TH

(5)

where PF is the acceptable proportion of false edges. As a result, En
c is obtained. Fig. 3 shows the Rayleigh

fitting to the gradient magnitude histogram and the corresponding edge image of the FLIR image of Fig. 4(a)
(the target has been bounded by a white rectangle for the sake of clarity). As it can be observed, detected edges
are discontinued and do not entirely enclose objects that appear in the scene. To solve this problem, a region
forming from partial edges technique [12] is used to segment the image regions that better fit to given partial
edges. This technique involves the following three steps:

1. For each edge pixel, e ∈ En
c , to search an opposite edge pixel, e′ ∈ En

c , which are those pixels that satisfies
the condition (6) within a circular area of radius Re:

π

2
< |(φ (e) − φ (e′)) mod (2π)| <

3π

2
(6)

where φ(e) is the gradient phase of the edge pixel e in the image In
c .

If an opposite edge pixel is found, each pixel on the connecting straight line is marked as a potential region
belonging to an object. If any opposite edge pixel is found, the next edge pixel is processed.

2. For each pixel, to compute the number of markers, b(x), which represent the number of times a pixel is on
the connecting line between opposite edge pixels.

3. To compute the weighted number of markers, B(x), as follows (7):

B(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.0 for b (x) = 0
0.1 for b(x) = 1
0.2 for b(x) = 2
0.5 for b(x) = 3
1.0 for b(x) > 3

(7)

Then, a pixel x is classified as member of a region if
∑
i

B(xi) in a 3× 3 neighborhood of x is one or larger,

otherwise it is classified as a background pixel.
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Figure 3. (a) Rayleigh fitting to the gradient magnitude histogram, and (b) the corresponding edge image of the FLIR
image of Fig. 4(a).

Fig. 4(b) shows the output of the proposed technique applied on the edge image 3(b). Fig. 5(b) shows another
example that involves very small targets, where the original FLIR image is shown in Fig. 5(a) (the targets have
been bounded by a white rectangle for the sake of clarity).

Resulting of this process, GSn is obtained, which contains all objects in In
c whose size is equal to or smaller

than Re.

2.2.2. Motion-based Segmentation

A motion-based segmentation is carried out through a simple automatic thresholding technique applied on the
difference image computed between In−1 and In

c .

The difference image between In−1 and In
c is automatically thresholded analyzing its noise distribution.

Additive Gaussian noise is assumed to be present in these types of FLIR images. Moreover, the difference of
two images with additive Gaussian noise is another image with Gaussian noise distribution. Therefore, their
noise parameters, µn and σn (mean and standard deviation respectively), can be estimated by fitting a Gaussian
distribution to the difference image distribution. The threshold is automatically computed as TM = 3 · σn,
that has associated to a false detection probability of 0.3%. After that, MSn is obtained, a moving region
segmentation which partially corresponds to moving objects in In

c , because of the overlapping of the areas of the
own moving objects between consecutive images. Fig. 4(c) and Fig. 5(c) show the output of this stage.

2.2.3. Moving-object Detection

GSn and MSn segmentation are combined to only select moving objects in In
c . The combination is carried out

by a conditional dilation [13] of MSn using GSn as the condition, and a 3× 3 block as the structuring element.
The whole set of potential moving targets are denoted as PT n. Final results of the potential targets detection
process are shown in Fig. 4(d) and Fig. 5(d).

2.3. Tracking and Target Validation

Potential targets in PT n are tracked throughout the sequence using a template correlation technique [6] and
a Kalman filter to obtain their trajectories, TJn, which are analyzed by means of curve fitting technique to
determine whether they are congruent with an aerial target, and hence, validate them, T n.

2.3.1. Target Tracking

Potential moving targets, PT n, are used to carry out the tracking between consecutive images through a template
correlation technique [6]. This technique creates an intensity model for each potential target in PT n−1 to search
its best correspondence within In

c . This correspondence represents the temporal evolution of that potential target
between consecutive frames.
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Figure 4. Stages of the Potential Target Detection module applied to a FLIR sequence with a medium size target: (a)
FLIR image, (b) Gradient-based Segmentation, (c) Motion-based Segmentation, (d) Moving Object Detection.

(a) (b)

(c) (d)

Figure 5. Stages of the Potential Target Detection module applied to a FLIR sequence with small size targets: (a) FLIR
image, (b) Gradient-based Segmentation, (c) Motion-based Segmentation, (d) Moving Object Detection.
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Each target model is created from a rectangular window, wn−1, of dimensions k × l that circumscribes the
target in In−1, and therefore, it contains the target and its surrounding background intensity information. The
best correspondence with the model is calculated by minimizing the MAD between the target window in In−1,
wn−1, and the candidate target window in In

c , wn
c , as it is shown in (8):

TMn (v, z) =
1

k · l
l∑

j=1

k∑

i=1

∣∣wn
c (i + v, j + z) − wn−1 (i, j)

∣∣ (8)

where −l < v < l and −k < z < k.

Current and past target tracked locations are filtered by a first order Kalman filter to smooth noisy trajec-
tories, since the expected target projected trajectories can be approximated by linear steps. As a result, a set
of potential target filtered trajectories are obtained, TJn = {TJn

1 , ..., T Jn
i , ..., T Jn

N}, where N is the number of
potential tracked targets and each potential target trajectory can be expressed as TJn

i = {rm
i , ..., rn

i }, where rm
i

is the i target location in the temporal instant m, in which the target appeared for the first time.

2.3.2. Target Validation

Each potential target trajectory, TJn
i , is analyzed to test if it is consistent with a real target trajectory, in order

to validate it, discarding those potential targets associated to erratic or non linear-wise trajectories produced by
inherent drawbacks of FLIR images and birds.

The performed analysis consists in evaluating the number of outlier trajectory locations, Lout, which are
computed through Median Absolute Deviation technique (MedAD). If Lout is larger than a predefined threshold
Thout the potential target is discarded, otherwise the potential target is validated.

MedAD [14] is a scale parameter estimator that automatically computes the number of outliers in TJn
i as

follows (9):

Lout =
{

rj
i ∈ TJn

i |
(
Rj

i

)2

>
(
2.5 · β̂

)2
}

(9)

where
(
Rj

i

)2

is the square residual distance between a trajectory location and its corresponding fitted trajectory
location. This has been computed using a line fitting model and Least Median Squares algorithm [12], that
robustly estimates the parameters of the line that better fits to the trajectory. And β̂ is the inlier scale estimator
given by (10):

β̂ = 1.4826 ·
(

1 +
5

(n − m + 1) − 2

)
·
√

median
{(

Rj
i

)2
}

(10)

where (n − m + 1) is the number of trajectory locations in TJn
i .

As the final result from this trajectory filtering, only those targets which follow consistent trajectories are
validated, T n.

3. RESULTS

The system has been tested with real FLIR sequences captured by an interlaced gray-level infrared camera in
8-12 µm range with a resolution of 512 × 512 pixels. The camera was mounted on a moving platform that
produced a global motion in the sequences. These sequences are composed by large non-textured sky regions
combined with cloud and earth image areas that represent the sources of clutter. In addition, sequences are
affected by varying illumination conditions.

Fig. 6 shows a real FLIR image in (a) and two different motion vector field estimations in (b) and (c). The
motion vector field in (b) has been computed for all the blocks in the image, which produces a huge amount of
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Figure 6. (a) Real FLIR image, (b) motion vector field for all blocks in the image, and (c) motion vector field for blocks
with large intensity variance.

outlier motion vectors due to the aperture problem present those blocks that lie on non-textured regions. On the
contrary, the motion vector field in (c) has been only computed for those blocks holding textured details (blocks
whose variance is larger than a predefined threshold as presented in 2.1.1). The result is that only a few outliers
are present in the MV Fn−1,n, allowing to obtain accurate global motion estimations.

The performance of the global motion compensation is presented in Fig. 7. It shows the global motion
compensation error measure computed as the Peak Signal to Noise Ratio (PSNR) between In−1 and In

c for two
different situations: global motion compensation using RANSAC, (represented in Fig. 7 by a solid line); and
that obtained applying only Least Mean Squares (LMS) (represented in Fig. 7 by a dashed line). As it can be
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Figure 7. Graphic about PSNR measures: the solid line corresponds to robust parameter estimation and the dashed line
to non-robust parameter estimation.

observed, RANSAC offers better results since it is able to detect outliers and discard them, while LMS is very
sensitive to outliers. Moreover, RANSAC obtains results much more stable throughout the entire sequence than
those obtained by LMS.

The Tracking and Target Validation module has been tested in FLIR sequences containing real and false
targets. Fig. 8 shows a graphic that contains trajectory locations of a real target (marked with crosses), Kalman-
filtered trajectory locations (marked with diamonds joint with a dashed line), the best fitting line (marked with
a solid line) and the boundaries that separate inliers from outliers (marked with dashed lines). Notice that
all filtered trajectory locations lies into the boundaries, i.e. the number of outliers is zero, and therefore, the
potential target is validated as a real target.

Fig. 9 shows a similar graphic but associated to a false target. In this case, the number of outliers is larger
than zero, and hence, the potential target is discarded.

The performance of the whole system has been measured by means of the detection and false alarm rates
over a set of real FLIR sequences, in which always exist reduced regions of clutter (earth o clouds), necessary
for camera ego-motion compensation. An excellent Detection Rate of 99.2% has been achieved. False alarm rate
has been acquired before and after Tracking and Target Validation module to observe its improvement: false
alarm rate goes from 13.7% down to 0.4% when using the proposed trajectory filtering strategy.

4. CONCLUSIONS

A novel strategy for improving the false alarm rate in an ATDT system for aerial targets in airborne FLIR imagery
has been presented in this paper. This strategy consists in an efficient target trajectory filtering that refines the
detection process. Furthermore, the computational complexity of the system, especially that associated to the
ego-motion compensation task, has been carefully reduced in order to reach a real-time operation. The system
estimates local motion through a very fast selective-search block-matching algorithm. Global motion is robustly
inferred from local motion using a restricted-affine motion model, and a combination of gradient and motion
segmentation techniques are used to detect potential aerial targets from each compensated image. Potential
aerial targets are tracked by means of a target template-based correlation technique, followed by a Kalman filter
smoothing process. The smoothed trajectories are analyzed through a robust curve fitting technique to filter
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Figure 8. Graphic with trajectory locations of a real target (crosses), Kalman-filtered trajectory locations (diamonds
joined with a dashed line), the best fitting line (solid line) and the boundaries that separate inliers from outliers (dashed
lines).

Figure 9. Graphic with trajectory locations of a false target (crosses), Kalman-filtered trajectory locations (diamonds
joined with a dashed line), the best fitting line (solid line) and the boundaries that separate inliers from outliers (dashed
lines).
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those inconsistent with the expected trajectory for a real target. This approach allows to reduce significantly
the false alarm rate caused by inherit drawbacks of FLIR imagery such as artifacts, changes in illumination
and variations in thermal signature, as well as, moving clutter due to birds. Presented results show the good
performance of this strategy.1516171819
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under project TIN2004-07860 (Medusa) and by the Comunidad de Madrid under project P-TIC-0223-0505 (Pro-
Multidis).

REFERENCES

1. A. Strehl and J. K. Aggarwal, “Detecting moving objects in airborne forward looking infra-red sequences,”
in Workshop on Computer Vision Beyond Visible Spectrum, Proc. IEEE, pp. 3–12, 1999.

2. A. Strehl and J. Aggarwal, “Modeep: a motion-based object detection and pose estimation method for
airborne flir sequences,” Machine Vision and Applications 11(6), pp. 267–276, 2000.

3. E. Estalayo, L. Salgado, F. Jaureguizar, and N. Garćıa, “Efficient image stabilization and automatic target
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