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Abstract

Visual tracking with moving cameras is a challenging
task. The global motion induced by the moving camera
moves the target object outside the expected search area,
according to the object dynamics. The typical approach is
to use a registration algorithm to compensate the camera
motion. However, in situations involving several moving ob-
jects, and backgrounds highly affected by the aperture prob-
lem, image registration quality may be very low, decreas-
ing dramatically the performance of the tracking. In this
work, a novel approach is proposed to successfully tackle
the tracking with moving cameras in complex situations,
which involve several independent moving objects. The key
idea is to compute several hypotheses for the camera mo-
tion, instead of estimating deterministically only one. These
hypotheses are combined with the object dynamics in a Par-
ticle Filter framework to predict the most probable object
locations. Then, each hypothetical object location is evalu-
ated by the measurement model using a spatiogram, which
is a region descriptor based on color and spatial distribu-
tions. Experimental results show that the proposed strategy
allows to accurately track an object in complex situations
affected by strong ego motion.

1. Introduction

Visual tracking is a fundamental task in many computer
vision applications such as surveillance, autonomous vehi-
cle navigation, robotics, medical imaging, human computer
interaction, etc. The aim of the tracking is to localize a pre-
viously detected object in each frame of a video sequence.
This is essentially accomplished through a correspondence
process, consisting in finding the image region that matches
closer with the target object, or more specifically with an
object model that encodes the main features of the target
object. This correspondence process is usually restricted to

a subset of image regions, called search area, where it is ex-
pected to find the target object according to its dynamics.
This allows not only to reduce the computational burden,
but also to discard possible false matches, i.e. it simplifies
the possible multimodal correspondence process to the uni-
modal case.

However, in the case of a moving camera (for exam-
ple mounted on aerial, maritime or terrestrial platform), the
tracking may fail since the whole image undergoes a global
motion that can move the object outside the search area.
To overcome this problem, the typical approach is to use
a registration algorithm [10], which estimates the camera
motion between consecutive images to compensate it. As
a result, it is obtained a sequence of aligned images where
the side effect of the camera motion, or ego motion, has
been eliminated. The quality of the image registration can
decrease dramatically in situations with several indepen-
dent moving objects, and with backgrounds highly affected
by the aperture problem [4]. Despite the robust statisti-
cal methods used by some works [9, 1, 8] to address these
challenging problems, the enough quality in the image reg-
istration to satisfactorily perform the tracking can not be
ensured.

Here, a novel approach is proposed to successfully tackle
the tracking problem with moving cameras in highly com-
plex situations where other algorithms are prone to fail. The
key idea is to compute several highly probable hypotheses
of camera motions, instead of trying to deterministically
estimate the best one. These hypotheses represent a dis-
crete approximation of the underlying probability distribu-
tion function (pdf) of the camera motion. This pdf along
with the pdf that describes the object motion form the sys-
tem model of a Particle Filter, which is used to predict the
most probable object locations between consecutive frames.
Taking into account several camera motion candidates al-
lows to handle challenging situations, such as the presence
of multiple independent moving objects, and backgrounds
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highly affected by the aperture problem. Each hypothesis
about the object location is evaluated or weighted by the
measurement model of the Particle Filter. This character-
izes the target object by means of a spatiogram [3], which is
a color histogram extended with structural information. The
posterior pdf of the object location is computed by compar-
ing the object spatiogram with those ones corresponding to
each predicted location. The final estimation of the object
location is finally obtained by means of the Maximum A
Posteriori (MAP) estimator.

The rest of the paper is organized as follows: in Sec. 2
the Particle Filter framework for tracking with moving cam-
eras is explained. The system model describing the camera
and object dynamics is introduced in Sec. 3. The measure-
ment model based on spatiograms is presented in Sec. 4.
Experimental results are shown in Sec. 5, and conclusions
are drawn in Sec. 6.

2. Particle Filter Framework for Tracking

The Particle Filter framework [2] for tracking aims to
estimate the state of a target object that changes over time
using a sequence of noisy measurements. The state of the
object xk at time k is a vector that contains all the relevant
information about the object for the tracking purpose. In the
present work, xk encodes the kinematic and the geometric
information, given by

xk = [lk, l̇k, sk]�, (1)

where lk = [lxk , l
y
k, 1]� is the vector of homogeneous spa-

tial coordinates of the object, l̇k = [l̇xk , l̇
y
k]� is the velocity

information, and sk = [sM
k , sm

k , sθ
k]� respectively contains

the mayor axis, the minor axis, and the orientation of the
ellipse that encloses the target object.

Noisy measurements zk are represented by a vector of
observations that is related to the object information con-
tained in the state vector. These observations are the HSV
color channels of the image data: zk = [Hk,Sk,Vk]�.

Instead of computing deterministically the state of the
object, the Particle Filter algorithm recursively calculates
some degree of belief in the state xk at time k, using all the
available information, including the set of measurements
z1:k = {zi, i = 1, ..., k} up to time k. Thus, the track-
ing task can be formulated as the estimation of the posterior
pdf p(xk|z1:k) of the state of the object. This pdf is approx-
imated at each time step by a set of Ns weighted random
samples

p(xk|z1:k) ≈ W−1

Ns

NS∑
i=1

wi
kδ(xk − xi

k), (2)

where the function δ(x) is the Kronecker’s delta, and
WNs

=
∑NS

i=1
wi

k is a normalization factor. As the number

of samples becomes very large, this approximation becomes
equivalent to the true posterior pdf.

Under certain assumptions [2], both samples, xi
k, and

weights, wi
k, can be recursively computed by means of the

principle of the importance sampling, which formulates wi
k

as

wi
k = wi

k−1

p(zk|xi
k)p(xi

k|xi
k−1

)

q(xi
k|xi

k−1
, zk)

. (3)

The state transition probability p(xi
k|xi

k−1
) is defined by

the system model, which predicts the temporal evolution of
the state of the object according to the dynamics of the cam-
era and the target object.

The observation likelihood p(zk|xi
k), defined by the

measurement model, updates the predicted p(xi
k|xi

k−1
)

with current image data zk = [Hk,Sk,Vk]�.
The pdf q(xk|xk−1, zk) is the importance sampling

function, used to draw the samples xi
k. The pdf

q(xk|xk−1, zk) is usually approximated by p(xi
k|xi

k−1
),

what simplifies the Eq 3 to

wi
k = wi

k−1
p(zk|xi

k). (4)

Once computed the posterior pdf p(xk|z1:k) as stated
above, the estimation of the state vector of the object x̂k

at time step k is obtained by means of the MAP estimator,
given by

x̂k = MAP (xk) = arg max
xk

p(xk|z1:k). (5)

The following sections respectively describe the system
and the measurement models, used to update the weights
wi

k in each time step according to Eq 3.

3. System model

The temporal evolution of the state of the object depends
on both target object dynamics and camera dynamics. A
moving camera induces a global motion in the image that
affects the expected location of the moving object. This
fact is represented in the Fig. 1. This dual dependency is
encoded in the system model of the state of the object as

xk = Bk−1(Axk−1 + vk−1), (6)

where (Axk−1 + vk−1) describes the dynamics of the ob-
ject, and Bk−1 represents the camera dynamics. The matrix
A represents a linear model of constant velocity and size
given by

A =

[
I2 02×1 I2 02×3

06×2 I6

]
(7)

where I2 and I6 are respectively identity matrices of size
2× 2 and 6× 6, and 02×1, 02×3, and 06×2 are respectively
zeros matrices of size 2× 1, 2× 3, and 6× 2.
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Figure 1. The object location between consecutive time steps de-
pends on both camera dynamics and target object dynamics.

The noise variable vk−1 is an i.i.d. Gaussian process that
models the unknown disturbances in the linear state predic-
tion, so that the proposed system model of the object can
deal with slight variations of velocity and size.

The matrix Bk−1 representing the camera dynamics is
defined by

Bk−1 =

[
gk−1 03×5

05×3 I5

]
(8)

where I5 is an identity matrix of size 5 × 5, 03×5 is a zero
matrix of size 3×5, and 05×3 is a zero matrix of size 5×3.
The variable gk−1 is an independent stochastic process that
represents the camera motion as a 2D affine transformation.
This geometric transformation is a satisfactory approxima-
tion of the projective camera model, provided that the depth
relief of the objects in the scene is small enough compared
to the average depth, and the field of view is also small.
At time step k, the output of gk−1 is a random variable
whose pdf expresses the probability that the camera motion
can be described by a certain affine transformation. De-
spite the pdf of gk−1 is unknown, it is possible to draw
samples (i.e. affine transformation candidates) from gk−1

using the importance sampling principle. The drawing pro-
cess starts computing correspondences between features de-
tected in consecutive frames. For this purpose the SIFT al-
gorithm [5] has been used, which is able to obtain reliable
correspondences thanks to its robustness to noise and 3D
view point changes, and its invariance to changes in scale,
rotation and illumination. Then, the affine transformation
candidates are drawn by randomly selecting combinations
of three correspondences, since it is the minimum number
of point pairs to infer an affine transformation. The set of
combinations of three correspondences induces a subspace
of the most probable affine transformations. However, this
subspace can contain erroneous transformations due to the
presence of outliers, caused by independent moving ob-
jects, the appearance/disappearance of image regions, and
the aperture problem. RANSAC is a robust statistical algo-
rithm [7] that can be used to compute the minimum number
of affine transformations NAT that ensures with a probabil-
ity ps that at least one is true, since it has been computed
from a combination of correspondences without outliers.

The expression of NAT is

NAT =
log(1− ps)

log(1− (1− ε)3)
(9)

where ε is the expected maximum fraction of outliers.
According to this, the minimum number of particles NS

used in the Particle Filter should be higher than NAT to
ensures that the camera motion is correctly represented at
least by one sample.

4. Measurement model

The measurement model uses a spatiogram [3] to model
the appearance of the object. Spatiograms are histograms
augmented with spatial means and covariances to capture
a richer description of the object. The spatiogram of a re-
gion belonging to the intensity image I is defined as a vector
whose components are given by h(b) = [nb, μb,Σb], b =
1, ..., B, where nb is the number of pixels whose values be-
long to that of the bth bin, and μb and Σb are respectively
the mean vector and covariance matrix of the spatial coor-
dinates of the pixels contributing to the bth bin. The spa-
tiogram of an HSV image is computed in a similar way ex-
tending the unidimensional space of intensity pixel values
to the tridimensional space of HSV pixel values.

The similarity between two spatiograms h and h′is com-
puted by a weighted version of the Bhattacharyya coeffi-
cient, given by

ρW (h, h′) = ΣB
b=1

wbρ(nb, n
′

b), (10)

where ρ(nb, n
′

b) =
√

nbn
′

b, and the weights are defined
by wb = N(μb, μ

′

b,Σ
′

b)N(μ′b, μb,Σb), being N(n, μ,Σ) a
multivariate Gaussian function evaluated at n.

Then, the measurement model evaluates the probability
that the spatiogram h(xi

k) of a candidate region defined by
xi

k is similar to the spatiogram of the object h(x̂k−1) by
means of the expression

p(zk|xi
k) =

1√
2πσ

exp−
(

dW (h(xi
k), h(x̂k−1))

2

2σ2

)
(11)

where dW =
√

1− ρW is the Bhattacharyya distance, and
σ is the expected temporal variation of the Bhattacharyya
distance due to temporal disturbances of the object appear-
ance.

The object model, i.e. the spatiogram, is updated in each
instant by the image region defined by the MAP estimation
of the state x̂k.

5. Results

The presented visual tracking strategy for moving cam-
eras is tested in two challenging situations, consisting in
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a chase of a object at high speed, where the camera that
acquires images is mounted in a moving platform. This
kind of sequences are ideal for testing the proposed track-
ing algorithm because they involve strong ego motions, and
multiple moving independent objects, which can deviate the
camera ego motion estimation. In both situations the poste-
rior pdf of the state of the object has been approximated by
50 samples or particles.

The first sequence has been acquired by a camera
mounted in a police car that is chasing a motorbike. The
main challenges are the strong ego motion and the reduced
set of appropriate regions to compute reliable correspon-
dences. The major part of the image is composed by low
textured regions in which the quality of correspondences is
very poor due to the aperture problem. The proposed model
for the camera dynamics, that takes into account multiple
hypotheses, allows to manage this situation, and thus to per-
form successfully the tracking of the target object, as shown
in Fig. 2. The first row of frames corresponds to two non
consecutive time steps of the sequence, where the tracked
target object (the motorbike) is enclosed by a white ellipse.
The second row shows the same frames along with a set of
ellipses that represents the set object state samples consid-
ering only the camera dynamics. Note that ellipses are not
exactly located on the target object, since only the camera
dynamics has been taken into account. Using the object dy-
namics to modify the object location candidates, ellipses are
finally located on the image region of the target object, as
shown in the third row. The combination of the target object
and camera dynamics allows to satisfactorily propagate the
posterior pdf of the state of the object.

The second sequence has been acquired from a camera
mounted on a helicopter. The chased object in this case is
a red car. In addition to the strong ego-motion, there are
several independent moving objects (other cars) that makes
more challenging the camera motion estimation, since the
correspondences between the moving objects can induce
false camera motions. Fig. 3 shows three rows of frames
with the same disposition and meaning as in Fig. 2. Note
that ellipses of the second and third rows are distributed
along the direction of the highway because the correspon-
dences between SIFT features belonging to cars induce sev-
eral false camera motion candidates in such direction. In
spite of this drawback, the tracking is successfully accom-
plished as observed in the first row, where the white ellipse
encloses the tracked object. Notice how this strategy allows
to discard as possible candidate the other red car (second
column of frames) marked with a white X, since there is
no camera nor object motion that supports that region. This
avoids that the tracking process can be distracted by similar
objects.

The performance of the proposed tracking algorithm
has been compared with two tracking techniques described

Video #L alg. 1 #L alg. 2 #L alg. 3

redcar1.avi 0 0 0
redcar2.avi 1 4 9
person1.avi 0 3 7

motorbike1.avi 4 13 24
motorbike2.avi 1 3 6
motorbike3.avi 2 8 19
motorbike4.avi 5 16 26
motorbike5.avi 8 23 37

bluecar1.avi 0 1 3
bluecar2.avi 0 2 5
bluecar3.avi 1 3 6

Table 1. Comparison between the three tracking algorithms using
the criteria of number of times that the tracked object has been lost
(#L), where alg. 1, alg. 2, and alg. 3 refer the proposed method,
the Particle Filter approach with compensation, and the Particle
Filter approach without compensation, respectively.

in [6] and [8]. The main differences with the presented
approach are that in [6] the camera ego-motion is not
compensated, while in [8] it is compensated, but using
only one affine transformation instead of several ones.
All of three strategies use a Particle Filter framework to
perform the tracking. In order to appropriately compare
the three tracking algorithms, the same set of parameters
has been used to tune the Particle Filters. The dataset
used to perform the comparison is composed by 11 videos
with challenging situations: strong ego-motion, changes
in illumination, variations of the object appearance and
size, and occlusions. The whole dataset, along with the
tracking results, can be downloaded from the website:
http://www.gti.ssr.upm.es/paper/avss09/.
The comparison is based on the following criteria: number
of times that the tracked object has been lost. Each time
that the tracked object is lost, the corresponding tracking
algorithm is initiated with a correct object detection from
the same frame where the object was lost. Table 1 shows the
comparison of the three tracking algorithms, where it can
be appreciated that proposed algorithm is quite superior,
due to the other approaches can not satisfactorily handle
the ego-motion. On the other hand, it can be observed that,
independently of the algorithm, the results obtained by the
videos “motorbike1-6.avi” are worse than the rest. The
reason is that the size of the tracked object is very small,
less than one hundred pixels, and therefore the object can
not be robustly represented by a spatiogram.

6. Conclusions

The presented visual tracking strategy is able to track
an object in complex situations involving strong camera
ego motion and multiple independent moving objects. The
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Figure 2. Tracking results in a motorbike chase from a camera mounted on a car. The first row shows the estimation of the object state
represented by a white ellipse for two different frames. The second row shows candidates of the object state taking only into account the
camera dynamics. The third row shows the modified candidates of the object state using also the object dynamics.

tracking problem is modeled by a Particle Filter which uses
an advanced system model that takes into account not only
the object dynamics, but also the camera dynamics. The
main novelty arises from modeling the camera dynamics by
an independent stochastic process. Thus, in each time step
the camera dynamics is represented by a discrete pdf that
encodes the most probable global affine transformations be-
tween consecutive frames. This dramatically improves the
robustness of the tracking, especially in those situations
where the camera motion can not be obtained accurately
(sequences highly affected by the aperture problem) and/or
there are several possible camera motions (sequences con-
taining several independent moving objects). In this sense,
the proposed approach outperforms the existing techniques
such us [9, 1, 8], which perform the tracking considering

only one hypothesis of camera motion. As a consequence
of this, the tracking process may fail if the estimated camera
motion does not correspond with the true one. Experimental
results support the previous assertion, showing the high per-
formance of the presented tracking approach in challenging
situations.
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Figure 3. Tracking results in a car chase from a camera mounted on a helicopter. The first row shows the estimations of the object state
represented by a white ellipse for two different frames. The second row shows candidates of the object state taking only into account the
camera dynamics. The third row shows the modified candidates of the object state using also the object dynamics. The white X in the
second column indicates a similar object (other red car) that could be easily mistaken for the target object.
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