research

Automatic aerial target detection and tracking system in airborne FLIR images based on efficient target trajectory filtering

Abstract

Common strategies for detection and tracking of aerial moving targets in airborne Forward-Looking Infrared (FLIR) images offer accurate results in images composed by a non-textured sky. However, when cloud and earth regions appear in the image sequence, those strategies result in an over-detection that increases very significantly the false alarm rate. Besides, the airborne camera induces a global motion in the image sequence that complicates even more detection and tracking tasks. In this work, an automatic detection and tracking system with an innovative and efficient target trajectory filtering is presented. It robustly compensates the global motion to accurately detect and track potential aerial targets. Their trajectories are analyzed by a curve fitting technique to reliably validate real targets. This strategy allows to filter false targets with stationary or erratic trajectories. The proposed system makes special emphasis in the use of low complexity video analysis techniques to achieve real-time operation. Experimental results using real FLIR sequences show a dramatic reduction of the false alarm rate, while maintaining the detection rate

    Similar works