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ABSTRACT

Automatic target tracking in airborne FLIR imagery is currently a challenge due to the camera ego-motion.
This phenomenon distorts the spatio-temporal correlation of the video sequence, which dramatically reduces the
tracking performance. Several works address this problem using ego-motion compensation strategies. They use a
deterministic approach to compensate the camera motion assuming a specific model of geometric transformation.
However, in real sequences a specific geometric transformation can not accurately describe the camera ego-motion
for the whole sequence, and as consequence of this, the performance of the tracking stage can significantly
decrease, even completely fail. The optimum transformation for each pair of consecutive frames depends on
the relative depth of the elements that compose the scene, and their degree of texturization. In this work, a
novel Particle Filter framework is proposed to efficiently manage several hypothesis of geometric transformations:
Euclidean, affine, and projective. Each type of transformation is used to compute candidate locations of the
object in the current frame. Then, each candidate is evaluated by the measurement model of the Particle Filter
using the appearance information. This approach is able to adapt to different camera ego-motion conditions,
and thus to satisfactorily perform the tracking. The proposed strategy has been tested on the AMCOM FLIR
dataset, showing a high efficiency in the tracking of different types of targets in real working conditions.

Keywords: Target tracking, Particle Filter, ego-motion, Euclidean transformation, Affine transformation, Pro-
jective transformation, geometric transformation distributions, spatiogram, FLIR images, aerial imagery

1. INTRODUCTION

Target tracking in forward looking infrared (FLIR) imagery is an important and challenging subject in military
and surveillance applications. In contrast to visual images, FLIR images have low signal-to-noise ratios, target
objects low contrasted with the background, and non-repeatability of the target object signature. This fact, along
with the competing background clutter, and illumination changes due to weather conditions, make the tracking
task extremely difficult. In this context, the prior knowledge about the object dynamics allows to determine the
probable locations of the target object, and thus avoiding that the tracking algorithm may be distracted by similar
clutter structures. However, for applications based on airborne imagery, the unpredictable camera motion, called
ego-motion, induces a global motion in the image that prevents to use the object motion information, which
dramatically reduces the tracking performance. This problem is addressed in different manners in the scientific
literature, and the different methods can be split into three categories: based on the assumption of low ego-
motion, based on the object detection and matching, and based on the ego-motion estimation.

Works that assume a low ego-motion expect that the object maintains its spatio-temporal connectivity along
the sequence.1,2 Since these approaches fail in the case of strong ego-motion, other ones define a search area,
centered in the previous object location, where the object is expected to be in the current frame,3 instead of
assuming spatial connectivity. Nevertheless, the probability that the tracking algorithm can be distracted by
the clutter background increments with the size of the search area. Instead of making an exhaustive search
in a predefined image region, some authors propose to probabilistically model both the camera and the object
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dynamics by means of linear models using Kalman filters4 or Particle Filters.5,6 While these methods could be
appropriate for modeling the instability of a camera platform in a stationary situation (for example a camera
located on top of a pole that is moving because of wind), the ego-motion arising from an airborne platform
is highly non-linear and unpredictable, and therefore the tracking tends to fail in instants related to sudden
ego-motion.

Another category of methods propose to detect the target objects, and to perform the matching between
them,7,8 which can cope with arbitrarily large camera motions. However, this approach is totally dependent on
the correct object detection, which is a hard task prone to errors.

Works based on the ego-motion estimation offer more versatility for airborne FLIR imagery. They try
to compute the camera ego-motion between consecutive frames in order to compensate its side effect, and
thus recovering the spatio-temporal correlation of the sequence. The camera ego-motion is assumed to follow
a geometric model, usually affine or projective, whose parameters are estimated using an image registration
technique.9 For example, in Refs. 10–14 an area-based image registration technique is used to estimate the
parameters of an affine geometric model. However, the presence of independent moving objects can drift the
ego-motion estimation, especially when their size is significative in comparison with the size of the regions of
highly structured clutter. In this case, a feature-based technique along with robust estimation methods can obtain
better results. Nonetheless, due to the aforementioned drawbacks of the FLIR imagery, distinctive features can
hardly be detected. Some works15–17 use edge based features, that are not the most distinctive but can be easily
detected, and then, they make use of the robust estimation theory to deal with the large number of outliers in
the computation of an affine model.

All ego-motion estimation based approaches have in common that use only one geometric transformation
to model the camera motion along the whole sequence. This may not be suitable because the selection of the
appropriate geometric model is a tradeoff between the capability of the proposed transformation to model the
camera motion, and the accuracy in the estimation of its parameters. While the geometric camera model is
projective, the accuracy of the estimation of its eight parameters may become very low due to the poor image
quality of the FLIR imagery. If a geometric model with a lower number of parameters (affine or Euclidean
models) is selected, the accuracy can increase since there are less degrees of freedom. However, the estimated
motion could not properly represent the camera motion, for example when the camera is close to the target
object, an Euclidean or affine motion model is unable to capture the skew, pan and tilt of the planar scene.
Moreover, the appropriate camera model depends on the depth relief of the objects, the average depth in the
scene, and the size of the field of view of the camera,18 information that usually is not available.

In this work, a novel approach for object tracking under strong camera ego-motion conditions is proposed,
which efficiently manages several models of camera ego-motion (Euclidean, affine, and projective transformations)
using a Particle Filter framework. For each transformation model, a discrete likelihood distribution is computed,
which approximates the space of geometric transformations by a set of weighted samples. These geometric
transformation distributions model the camera dynamics, and along with the own object dynamics constitute
the system model of a Particle Filter. Both the camera and the object dynamics are used to compute a sampled
prior probability distribution function (pdf) of the object location. Based on appearance information, the prior
object location pdf is updated according to the measurement model of the Particle Filter. Using a spatiogram to
encode the appearance information, the measurement model evaluates the similarity of the spatiogram related
to the target object and those ones corresponding to the samples of the prior object location pdf. The resulting
posterior object location pdf is used to estimate the object location in each time step. According to this approach,
the samples drawn from the geometric transformation that best models the camera ego-motion will have a higher
weight. This allows to adapt to different camera ego-motion conditions, and thus to satisfactorily perform the
tracking.

The rest of the paper is organized as follows: in Sec. 2 the general Particle Filter framework for object tracking
is presented. The system model of the Particle Filter is described in Sec. 3, where the multi-geometric trans-
formation approach for modeling the camera dynamics is explained. Section 4 presents the measurement model
of the Particle Filter that uses a spatiogram to encode the appearance information of the object. Experimental
results over the AMCOM dataset are exposed in Sec. 5, and final conclusions are presented in Sec. 6.
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2. BAYESIAN VISUAL TRACKING FRAMEWORK

The Bayesian tracking aims to estimate the state of an object that changes over time using a sequence of noisy
measurements. The state of the object xk at time k is a vector that stores the kinematic (position and velocity
on the image plane) and geometric (size and shape) information to characterize the object. It is mathematically
expressed as

xk = [lk, l̇k, sk]�, (1)

where lk = [lxk , lyk]� is a vector with the object spatial coordinates, l̇k = [l̇xk , l̇yk]� is a vector with the velocity
information, and sk = [sM

k , sm
k , sθ

k]� is a vector that respectively encodes the mayor axis, the minor axis, and
the orientation of an ellipse that encloses the object.

The noisy measurements zk is a vector of observations related to the object information contained in xk.
These observations are the intensity data of the image sequence: zk = Ik.

The Bayesian approach calculates some degree of belief in the state xk at time k, using the prior information
about the object, and the set of measurements z1:k = {zi, i = 1, ..., k} up to time k. Thus, the tracking problem
consists in computing the posterior probability density function (pdf) p(xk|z1:k) of the state of the object. It is
assumed that the initial pdf p(x0|z0) ≡ p(x0), called the prior, is known. In the present work, p(x0) is initialized
as a Kronecker’s delta function δ(x0) using ground truth information (since it is available with the used test
sequences AMCOM). In a general case, p(x0) could be initialized as a Gaussian function using the information
given by an object detector algorithm, as in Refs. 1, 2, 13–17.

In order to be computationally efficient, p(xk|z1:k) is recursively calculated in two stages: prediction and
update. The prediction stage involves to obtain the prior pdf p(xk|z1:k−1) of the state at time k using the
posterior pdf p(xk−1|z1:k−1) at the previous time step via the Chapman-Kolmogorov equation19

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (2)

where p(xk|xk−1) is the state transition probability, defined by the equation

xk = fk(xk−1,vk−1), (3)

called the system model, where fk is a stochastic process that models the camera and object dynamics, and vk−1

is an independent stochastic process of noise that models the unknown disturbances in the state prediction. The
system model is described in detail in Sec. 3.

The predicted pdf p(xk|z1:k−1) appears usually translated, deformed, and spread by the process noise vk−1.
The update stage refines p(xk|z1:k−1) using the new measurement zk (measurements are assumed to be available
at discrete times) through the Bayes’ rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
. (4)

The likelihood function p(zk|xk) relates the noisy measurements to the state of the object, and it is defined by
the equation

zk = hk(xk,nk), (5)

called the measurement model, where hk is a stochastic process that evaluates in what degree the measurement
supports the prediction, and nk is an independent stochastic process related to the measurement noise. The
measurement model is described in detail in Sec. 4.

The denominator of Eq. (4) is a normalizing constant given by

p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk. (6)
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The recursive propagation of the posterior density, accomplished by Eqs. (2) and (4), is the optimal solution,
but in practice it can not be determined analytically. In this situation, suboptimal methods can be used to
approximate the optimal Bayesian solution. Particle Filtering is one of the most popular suboptimal methods,
since it is able to deal with continuos state spaces and nonlinear/non-Gaussian processes, in contrast to other
suboptimal methods, such as Extended Kalman Filters, Unscented Kalman Filters and Hidden Markov Models,
that impose some operational restrictions.

Particle Filtering is a Monte Carlo method for simulating recursive Bayesian filters. In each time step, the
posterior density function is approximated by a set of Ns weighted random samples19

p(xk|z1:k) ≈ 1
Sw

NS∑
i=1

wi
kδ(xk − xi

k), (7)

where the function δ(x) is the Kronecker’s delta, {wi
k, i = 0, ..., NS} is the set of weights associated to the

samples, and Sw =
∑NS

i=1 wi
k is a normalization weight factor. As the number of samples becomes very large, this

approximation becomes equivalent to the true posterior pdf, and thus the Particle Filter approaches the optimal
Bayesian estimate.

Both samples xi
k and weights wi

k are computed using the principle of the importance sampling,19,20 which is
a simulation technique that aims to reduce the variance of the estimation given by Eq. (7). This is accomplished
selecting an appropriate set of samples {xi

k, i = 0, ..., NS} that are drawn from an alternative distribution function
q(xk|xk−1, zk), called the importance density. The optimal q(xk|xk−1, zk) should be proportional to p(xk|z1:k),
and have the same support (the support of a function is the set of points where the function is not zero), since
in that case the variance is zero. However, this is only a theoretic solution since it would imply the knowledge of
p(xk|z1:k). A practical and widely adopted solution is to use p(xk|xk−1) as the importance density, which is an
acceptable approximation provided that it is not much wider than the likelihood p(zk|xk), and the main modes
of q(xk|xk−1, zk) do not lie in the tails of p(zk|xk).

The weights wi
k related to each sample xi

k are recursively computed by19

wi
k = wi

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
. (8)

Since p(xk|z1:k) embodies all available statistical information, an optimal estimate of the state of the object
x̂k may be computed. Assuming that the shape component sk of the state of the object varies slowly, which is
justified by the rigid nature of target objects, and taking into account the possible multi-modality of p(xk|z1:k),
an efficient estimator can be derived using the weighted kernel density estimation theory. This is expressed
mathematically as

x̂k = max

(
1

Ns

Ns∑
i=1

p(xi
k|z1:k)K(xk − xi

k)

)
, (9)

where K(x) is a multidimensional Gaussian kernel of mean the zero vector, and covariance matrix Σn. As it will
be seen in Sec. 3, Σn is the same as the covariance matrix of the noise stochastic process vk−1. The computed
estimation x̂k is similar to the minimum mean square error (MMSE) estimator, but restricting the computation
to the set of samples belonging to the principal mode of p(xk|z1:k).

The performance of the proposed Bayesian tracking algorithm depends on the appropriate design of the
system and measurement models, which are respectively described in Sec. 3 and 4.
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3. CAMERA AND OBJECT DYNAMICS

The system model of the Particle Filter framework uses the available prior information to describe the temporal
evolution of the state of the object, which depends not only on the own object dynamics, but also on the camera
dynamics. This dual dependency arises from the fact that the camera motion induces a global motion in the
sequence that shifts the expected object location. According to this, the evolution of the state of the object can
be expressed as

xk = f(xk−1,vk−1) = fcam(xobj
k ,gk−1) (10)

where xobj
k = fobj(xk−1,vk−1) is a linear approximation of the object dynamics given by

fobj(xk−1,vk−1) = Axk−1 + vk−1, (11)

where the matrix A is defined, according to a model of constant velocity and shape, as

A =
[

I2 I2 02×3

05×2 I5

]
. (12)

The matrices I2 and I5 are respectively identity matrices of size 2×2 and 5×5, and 02×3 and 05×2 are respectively
zero matrices of size 2 × 3, and 5 × 2.

The i.i.d. noise Gaussian process vk−1 models the unknown disturbances in the linear state prediction, so
that the object dynamics can deal with slight variations in velocity and size.

The function fcam(xobj
k ,gk−1) models the camera dynamics by means of a 2D geometric transformation, which

can be of type Euclidean, affine or projective. This geometric transformation is obtained from the stochastic
process gk−1, which is described in Subsec. 3.1. Then, each geometric transformation sample gi

k−1, drawn from
gk−1, is used to warp the ellipse defined by xobj

k . The resulting xk contains the ellipse parameters that predicts
the object location in the current frame. Notice that for affine and projective transformations, the warping can
produce a non elliptical shape region. In this case, the resulting warped region would be approximated by an
ellipse.

3.1 Geometric transformation likelihoods

The stochastic process gk−1 randomly draws a geometric transformation from one of the likelihoods p(geu
k−1|Ik−1:k),

p(gaf
k−1|Ik−1:k), and p(gpr

k−1|Ik−1:k), which are respectively the Euclidean, affine and projective likelihoods. These
are conditioned to Ik−1:k, the set of frames acquired between the time steps k− 1 and k, i.e. between the frames
for which the camera motion is estimated. The Euclidean likelihood is approximated by a set of weighted Eu-
clidean transformations geu,(i)

k−1 that represent the most probable camera motions between the instants k − 1 and
k, assuming an Euclidean transformation model. Mathematically, it is expressed as:

p(geu
k−1|Ik−1:k) ≈ 1

Neu

Neu∑
i=1

w
eu,(i)
k δ(geu

k−1 − geu,(i)
k−1 ), (13)

where weu,(i), i = 1, ..., Neu is the set of weights relative to samples.

The set of Euclidean transformations {geu,(i)
k−1 , i = 1, ..., Neu} are obtained from a feature-based correspondence

process. Features uj
k−1 are randomly selected in the image Ik−1 among the regions of higher gradient, which are

obtained using a Canny edge detector algorithm. Despite that this set of features can be affected in some degree
by the so called aperture problem,21 it is the most reliable set for the correspondence task, since techniques
that use the curvature information (Harris, SIFT) produce poor results in FLIR images (there are almost no
detected points because of their low signal to noise ratio). Each feature is characterized by a descriptor vector
d(uj

k−1) that contains the phase responses of a Gabor filter bank,22 which is tuned to different frequency scales
and orientations. Then, a similarity likelihood map LM is computed for each feature and the set of edge features
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obtained from Ik, also computed by means of the Canny algorithm. The function used to obtain the similarity
likelihood measure between the features uj

k−1 and uh
k is

LM (uj
k−1,u

h
k) =

1√
2πσd

e
−

||d(uj
k−1

),d(uh
k
)||2

2σ2
d , (14)

where ||a, b|| is the Euclidean distance, and σd is the expected deviation of the feature descriptor vectors in
consecutive images.

Since the best estimated correspondence for each feature does not guarantee the true one, several putative
correspondences are associated to each feature, those that have the highest values according to its LM , and
are local maxima. Using this framework of multiple correspondences per feature, Euclidean transformation
samples geu,(i)

k−1 can be obtained using the RANSAC algorithm. For this purpose, a random selection of Ncor

correspondences is made, taking into account that the features involved in correspondences must be different.
Ncor is chosen to be the minimum required to compute the desired geometric transformation, that in the case of
an Euclidean transformation is Ncor = 2 (3 and 4 for affine and projective transformations, respectively). The
weight associated to each Euclidean transformation sample geu,(i)

k−1 is computed as

weu,(i) =
Nf∑
j=1

LM (uj
k−1,g

eu,(i)
k−1 uj

k−1), (15)

where Nf is the number of features in Ik−1. The weight will be higher for those Euclidean transformations that
align or nearly align the frames Ik−1:k, since in that case the 2D points correspond to the same 3D point in the
scene.

The affine and projective transformation likelihoods, respectively gaf
k−1 and gpr

k−1, are computed in a similar
way to the Euclidean case.

Figure 1 intuitively shows the resulting geometric transformation likelihoods using the pair of FLIR images
corresponding to Fig. 2. The dashed black lines that appear in these FLIR images have been drawn as a visual
aid to clearly observe the camera motion. Figure 1 is composed by three different scattered plots, corresponding
from left to right to the affine, Euclidean and projective transformation likelihoods. Circles represent the result of
warping a reference 2D point p(x, y) = (1, 1) by the transformation samples of each transformation likelihood, and
the cross marks the reference point p(x, y). In an ideal case, without independent moving objects and erroneous
estimations of transformations, it would be expected to find high concentration of circles (i.e. a mode) around a
point, which represents the warping of the transformation that best models the camera motion. However, in a
real case, several distorted and spread modes could appear. In Fig. 1, a mode can be distinguished over the point
q(x, y) = (1, 8) for the Euclidean case. The same mode can also be observed for the affine likelihood, but it is
more spread due to two reasons. The first one is that the uncertainty in the estimation grows with the number
of estimated parameter, and the second one is derived from the RANSAC method used in the transformation
likelihood estimation, since it is more complicated to randomly select three correspondences without outliers
(affine case) than two ones (Euclidean case). For the same reasons, the circle distribution in the projective
case is still more distorted and more spread. Notice that only the transformation samples have been taken into
account, but not their weights. Combining both informations, the main mode would be more distinguishable.
Figure 3 shows the weight distribution for each transformation model, which approximately follow a Gaussian
distribution.

Figure 4 illustrates the fact that the most appropriate transformation model for representing the camera
motion varies along the time. The first row shows the absolute difference between the frame Ik1 , and the images
Ieu
k1−1, Iaff

k1−1, and Iproj
k1−1, which are obtained by warping the frame Ik1−1 with the transformations that have

the highest weights in the Euclidean, affine, and projective likelihoods, respectively. Note that darker values
correspond to lower values. The second and the third row show the same information, but for different consecutive
time steps (k2 and k3). In the first row, it can be visually observed that the Euclidean transformation is the best
one in representing the camera motion, which is quantitatively confirmed by its superior Peak Signal to Noise
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Figure 1. Experiment to intuitively show the affine, Euclidean and projective transformation likelihoods corresponding
to the images of Fig. 2. Circles represent the warpings of a reference point, marked by a cross, using the transformation
samples that represent the transformation likelihoods.

Image k−1 Image k

Figure 2. A pair of consecutive FLIR images. The dashed black lines have been drawn as a visual aid to clearly observe
the camera motion.

Ratio (PSNR) measure (it appears under each difference image). For the second and third row, the projective
and affine transformations are respectively the most appropriate to represent the camera motion.

4. OBJECT MODEL AND SIMILARITY LIKELIHOOD

The target object is modeled by means of its appearance using a spatiogram.23 Spatiograms are histograms
that have been augmented with spatial information to capture a richer description of the object. Considering an
intensity image, the spatiogram of a region is a vector whose components are defined by h(b) = [nb, μb,Σb], b =
1, ..., Nb, where nb is the number of pixels contributing to the bth bin (similar to a histogram), μb and Σb are
respectively the mean vector and covariance matrix of the spatial coordinates of the pixels belonging to the
bth bin. As a result, the object is not only characterized by its intensity distribution, but also by some basic
shape information. Notice that the mean and covariance of each bin define an ellipse that represents the spatial
distribution of the pixels contributing to that bin.

The distance measure between two spatiograms h and h′ is defined by means of the Bhattacharyya distance
dS(h, h′) =

√
1 − ρS(h, h′), where ρS(h, h′) is a weighted version of the Bhattacharyya coefficient given by

ρS(h, h′) = ΣNb

b=1wbρB(nb, n
′
b), (16)
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Figure 3. Weight distributions of the samples of the affine, Euclidean and projective transformation likelihoods.

where ρB(nb, n
′
b) =

√
nbn′

b is the the Bhattacharyya coefficient, and the weights are defined by

wb = N(μb, μ
′
b,Σ

′
b)N(μ′

b, μb,Σb), (17)

where N(n, μ,Σ) is a multivariate Gaussian function evaluated at n.

The measurement model evaluates the likelihood that a candidate region defined by xi
k, and characterized by

its spatiogram hc corresponds to the tracked object, whose appearance is modeled by the spatiogram ho. This
is mathematically expressed as

p(zk|xi
k) =

1√
2πσS

exp−
(

1 − ρS(hc, ho)
2σ2

S

)
, (18)

where σS is the expected variation of the Bhattacharyya distance due to the temporal evolution of the object
appearance.

5. RESULTS

The proposed object tracking algorithm has been tested using the AMCOM dataset. This consists of 40 infrared
sequences acquired from a camera mounted on an airborne platform. A variety of moving and stationary
terrestrial targets can be found in two different wavelengths: midwave (3μm - 5μm) and longwave (8μm - 12μm).
In general, the tracking task is quite challenging in this dataset due to the strong camera ego motion, the
magnification and pose variations of the target signatures, and the own characteristics of the FLIR imagery
described in Sec. 1.

Figures 5, 6, and 7 show some tracking results for the sequence ‘rng14 15’ of the AMCOM dataset. Figure 5
shows the tracking of a stationary object in some representative frames of the sequence. The target object is
enclosed by an ellipse defined by x̂k, i.e. the object state estimation in that time step. The proposed tracking
algorithm satisfactorily tracks the target object in the whole sequence, in spite of the strong ego-motion. Figure 6
illustrates how the combination of the camera and the object dynamics can efficiently handle the ego motion.
It shows two frames and two set of crosses related to each frame, which are the ellipse centers of each predicted
object location according to the system model. The set of crosses in frame (a) have been computed considering
only the object dynamics. This results in a poor object location estimation, since due to the camera motion the
majority of the crosses have been moved outside the object region. Taking into account the camera dynamics, the
side effect of the camera motion can be removed, which improves the accuracy of the predicted object location,
as shown in frame (b), where both the object and the camera dynamics have been considered. Figure 7 shows a
graph with the spatial distance between the estimated object location (represented by the ellipse center) and the
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Figure 4. Difference images between a frame and the previous frame warped by a geometric transformation. In each row,
a different pair of consecutive frames have been used to compute the difference images, while in each column a different
model of transformation has been applied to warp the frame. The difference images along with the PSNR measures reflect
that the geometric model that best represents the camera motion varies along the time.
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Figure 5. Some tracking results using the sequence ‘rng14 15’ of the AMCOM dataset. The tracked stationary object is
marked by a dashed ellipse.

(a) (b)

Figure 6. (a) Object location prediction, marked with crosses, considering only the object dynamics, (b) Object location
prediction considering both the object and the camera dynamics, frame.

available ground truth. The tracking is quite accurate along the time, except for the last part of the sequence,
where the increasing object size is not well estimated. This can also be visually appreciated in Fig. 5.

Finally, the performance of the tracking algorithm has been also tested with moving objects. Figure 8 shows
a moving object correctly tracked in different time steps of the sequence ‘rng16 07’ of the AMCOM dataset.

6. CONCLUSIONS

A new approach for object tracking under strong camera ego-motion conditions has been presented. The key
idea is to estimate a set of camera motion candidates using several geometric transformations: Euclidean, affine,
and projective. These candidates are combined with the prior information about the object motion to yield
a robust model of the object dynamics. Then, a Particle Filter framework is used to handle the multiple
hypotheses derived from the object dynamics. Thus, the Particle Filter can efficiently predict the object location
in conditions of strong ego-motion, where the motion component due to the ego-motion is quite larger than the
component due to the moving object. These hypotheses are weighted using the appearance information of the
target object. As a result, the hypothesis related to the transformation model that best describes the camera
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Figure 7. Graphic showing the spatial distance between the estimated object location given by the tracking algorithm,
and the available ground truth.

Figure 8. Some tracking results using the sequence ‘rng16 07’ of the AMCOM dataset. The tracked moving object is
marked by a dashed ellipse.

motion will have a higher weight. This allows to efficiently adapt to different camera ego-motion conditions, and
thus to satisfactorily perform the tracking. The results obtained using the AMCOM FLIR dataset demonstrate
the high performance of the presented tracking strategy in real working conditions, and with different types of
targets.
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