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Abstract. An efficient automatic detection strategy for aerial moving
targets in airborne forward-looking infrared (FLIR) imagery is presented
in this paper. Airborne cameras induce a global motion over all objects
in the image, that invalidates motion-based segmentation techniques for
static cameras. To overcome this drawback, previous works compensate
the camera ego-motion. However, this approach is too much dependent
on the quality of the ego-motion compensation, tending towards an over-
detection. In this work, the proposed strategy estimates a robust motion
vector field, free of erroneous vectors. Motion vectors are classified into
different independent moving objects, corresponding to background ob-
jects and aerial targets. The aerial targets are directly segmented using
their associated motion vectors. This detection strategy has a low compu-
tational cost, since no compensation process or motion-based technique
needs to be applied. Excellent results have been obtained over real FLIR
sequences.

1 Introduction

Automatic target detection in FLIR imagery are challenging problems due to
low signal-to-noise ratio, non-repeatability of target signatures and changes in
illumination. Moreover, airborne camera induces a global motion in the sequence
(called ego-motion), which produces that static background objects can be de-
tected as moving targets. To overcame the camera ego-motion problem, most of
works apply a compensation stage that follows the scheme: computation of the
motion vector field, parameter estimation of the global motion and compensation
of the global motion [1]-[6]. Each one of these sub-stages has several drawbacks,
that as a whole produce a low quality image compensation. Erroneous motion
vectors in the motion vector field computation are the most significative draw-
back, as they can cause an erroneous global motion estimation.

A low quality or erroneous image compensation directly affects to motion-
based techniques, that only produces satisfactory results in static images or in
perfect compensated images. Besides, these techniques are based on the sub-
straction of consecutive images [1][2]. Therefore, they usually do not segment
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entire moving objects, only some parts of them, due to overlapping of the own
objects between consecutive images.

On the other hand, almost all works deal with terrestrial targets. This implies
that the airborne camera aims to high-textured earth regions. Nevertheless, this
work addresses the aerial target detection, as in [3] and [7]. Consequently, the
camera aims to low-textured sky regions, which are not valid to estimate motion
due to aperture problem [8]. In this case, the camera ego-motion compensation
depends on a reduced set of high-textured cloud and earth regions (if they exist),
decreasing its quality.

In this paper a new aerial target detection strategy is presented, which is able
to detect moving aerial targets in low-textured sky sequences affected by cam-
era ego-motion. This is achieved by computing a free-error motion vector field, in
which high-textured regions are only considered. The motion vector field is ana-
lyzed to classify their motion vectors as belonging to background or aerial target
regions. Aerial targets are morphologically segmented using the previous motion
vector classification. As a result, an accurate and low complexity target detection
is obtained, as no static-camera-oriented motion-based technique is applied.

This paper is organized as follows: Section 2 presents an overview of the pro-
posed strategy. Section 3 describes the robust image motion estimation. The
background and aerial target detection are presented in Section 4 and 5, respec-
tively. Section 6 shows experimental results obtained over real FLIR sequences.
Finally, conclusions are presented in Section 7.

2 Strategy Overview

The proposed detection strategy is carried out into three different stages, as
shown in Fig 1. The Image Motion Estimation stage automatically detects the
edge regions in two consecutive images (In−1 and In) of the FLIR sequence. A
free-error sparse motion vector field is computed (SMV Fn), using only those
image regions where were detected edges. The Background Detection stage an-
alyzes SMV Fn to find out if a set motion vector corresponding to background
objects exists. If so, those motion vectors are discarded and the rest (MVAT ) are
classified as belonging to aerial targets. The Target Detection stage segments all
the aerial targets (AT n) presented in In, by morphologically processing those
edge regions corresponding to MVAT .

Image Motion 
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Detection

Target Detection
Edge Detection

Edge-Matching

In-1, In ATnMVATSMVFn

Image Motion 
Estimation

Background 
Detection
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Fig. 1. Stages of the proposed detection strategy
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3 Image Motion Estimation

This stage detects the edges of a pair of consecutive images, In−1 and In, and
performs an edge-matching to compute a motion vector field, which represents
the local motion in the image.

3.1 Edge Detection

A Laplacian of Gaussian based edge detector along with an automatic thresh-
olding is used to detect all the relevant edges in a pair of consecutive images,
In−1 and In.

A Laplacian of Gaussian filter LoG is applied to the image In to stand out
those regions with high intensity variation. As a result, In

LoG is obtained, whose
intensity values follow a Laplacian distribution, assuming an additive Gaussian
noise in the image [11],[12]. The expression of the Laplacian distribution is given
by (1):

L(x) =
1
2b

· e−(|x−μ|/b) (1)

where μ is the mean and b is a scale parameter. These parameters are estimated
through a robust parameter estimation technique composed by two parts. In
the first part, a preliminary estimation, μp and bp, is carried out through the
maximum likelihood parameter estimation algorithm. In the second part, μ and
b are obtained using the same technique but only over a range of values of In

LoG,
determined by (2):

− 4σ < In
LoG < 4σ (2)

where σ = 2b2
p is the variance of a Laplace distribution with a scale parameter

equal to bp.
An adaptive threshold TLoG is computed from μ and b as in (3):

TLoG = μ − b · ln
(

1 − 2
∣∣∣∣Pf

2
− 0.5

∣∣∣∣
)

(3)

where Pf is the acceptable proportion of false edges (a high value will produce
more false edges but detect more true ones, and viceversa).

The intensity values of In
LoG smaller than TLoG are set to zero, obtaining

In
ThLoG. Then, a zero-crossing technique is applied to In

ThLoG to obtain a binary
edge image En, which contains all relevant edges. This process is also applied to
In−1 to obtain the edge image En−1.

Fig. 2 shows the automatic edge detection process. The FLIR image presented
in Fig. 2(a) is filtered by LoG. The intensity distribution of the resulting filtered
image is fitted by a Laplacian distribution, as shown Fig. 2(b). An optimum
threshold is computed from the parameters of the previously fitted Laplacian
distribution. Applying this threshold, the edge image is obtained (Fig. 2(c)). As
can be observed, this edge image containes the main edges in the FLIR image,
while correctly rejecting those intensity variations due to the noise.
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3.2 Edge Matching

En−1 and En are morphological dilated with a squared structuring element of
size 5 × 5 (which is an acceptable size for selecting the own edge and its more
significative neighborhood, that will use to find the edge-based correspondences),
obtaining DEn−1 and DEn. The dilated edge pixels from DEn−1 are divided
into a set of kc clusters, Cn−1

DE . These clusters are calculated by means of a k-
means algorithm, which uses the spatial coordinates of the dilated edge pixels
as a feature vector. The number of clusters kc is computed as in (4):

kc =
NDE

Npix
(4)

where NDE is the number of pixels corresponding to the dilated edges, and Npix

is a predefined average number of pixels for each cluster. A high value of Npix

will produce a better quality correspondence but less resolution in the generated
motion vector field, and viceversa.

Fig. 3 depicts the clustering of the dilated edge regions DEn−1, obtained by
applying a k-means algorithm over the coordinates of dilated edge regions.

Each cluster in Cn−1
DE is composed by a set of pixel coordinates that are used

to form clusters of pixels in In−1, whose set is denominated Cn−1
I .

The Edge-Matching sub-stage (called in this way because each cluster of Cn−1

are formed by pixels belonging to edge regions) compares each cluster of Cn−1
I

with the corresponding regions in In (using the same cluster shape) , and its
adjacent neighborhood located inside a predefined search area Sa. The search
area Sa is constrained to the dilated edge pixels of DEn, since the best corre-
spondence should be another edge region.

The best matching is computed minimizing the mean absolute difference cost
function (MAD), whose expression is given in (5):

MAD(dx, dy) =
1

Npc

∑
(x,y)∈Cn−1

I,i

∣∣In−1(x, y) − In(x + dx, y + dy)
∣∣ (5)

where Cn−1
I,i is the cluster i of Cn−1

I of size Npc pixels; and (dx, dy) are the
coordinates of each candidate motion vector inside Sa.

The best matching produces a motion vector that defines the movement of one
cluster in In−1 with the corresponding one in In. The set of estimated motion
vectors, related to all the clusters of In−1, forms a sparse forward motion vector
field, SFMV Fn.

Erroneous vectors can be obtained in SFMV Fn due to aperture problem
[8], the low signal-to-noise ratio of FLIR images and objects that appear or
disappear between consecutive images. To discard these erroneous vectors (that
could be detected as aerial targets), each motion vector in SFMV Fn is analyzed.
This analysis consists in computing the sparse backward motion vector field
SBMV Fn between In and In−1, following the same procedure as for computing
SFMV Fn, but now the clusters of In are those resulting from the best matching
in the forward motion estimation process and the search area is constrained
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Fig. 2. (a) Original FLIR image, (b) Laplacian fitting of the LoG-filtered image inten-
sity distribution, (c) detected edges using the threshold computed through estimated
Laplacian parameters

by DEn−1, the dilated edges of En−1. Then, the coherency between forward
and backward motion vector fields is verified, by imposing that each couple of
associated vectors must satisfy (6):

(
dSFMV F n

x , dSFMV F n

y

)
= −

(
dSBMV F n

x , dSBMV F n

y

)
(6)
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As a result, an accurate sparse motion vector field SMV Fn is obtained, free
of erroneous motion vectors.

Fig. 3. Clustering of the dilated edge regions using a k-means algorithm

4 Background Detection

The purpose of this stage is to determine if background objects, mainly earth
and cloud regions, appear in the FLIR image, and if so, to detect them. The
presence of background objects is based on the evaluation of two conditions:
quantity and majority conditions. First, the quantity condition is evaluated,
which consists in checking if the number of motion vectors in SMV Fn is larger
than a predetermined threshold. Since the background object size is significantly
larger than the target size, the number of motion vectors in SMV Fn in presence
of background objects will be much larger than in presence of only aerial targets.
If the quantity condition is fulfilled, then the majority condition is evaluated.
This condition establishes that al least 50% of motion vectors must follow a
coherent motion (corresponding to camera ego-motion). This avoids that aerial
targets to be considered as background objects, in the rare situation that an
image composed by numerous aerial targets have passed the quantity condition.
Notice that the coherent motion corresponding to the background objects can
have a magnitude different from zero, even though the background objects are
actually static, due to the ego-motion induced by the airborne camera. The
coherent motion is modeled through a restricted-affine transformation, RAT .
This transformation is adequate, as the long distance between the camera and
both target and background objects allows to simplify the projective camera
model into an orthogonal one [7]. The RAT only considers translations, rotations
and zooms, as shown in (7):⎡

⎣xn−1

yn−1

1

⎤
⎦ =

⎡
⎣ s · cos θ s · sin θ tx

−s · sin θ s · cos θ ty
0 0 1

⎤
⎦ ·

⎡
⎣xn

yn

1

⎤
⎦ (7)

where s, θ, tx and ty are respectively zoom, angle of rotation, horizontal trans-
lation and vertical translation; and, xn−1, yn−1, xn, yn are the coordinates
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of a determined pixel in In−1 and In respectively, which are related by the
RAT transformation.

The RAT parameters are estimated by means of a robust parameter estima-
tion technique, based on RANSAC [9], Least Median Square [9] and Median
Absolute Deviation algorithms [10]. This estimation technique starts randomly
sampling S pairs of motion vectors from SMV Fn. S is calculated to ensure
with a probability Ps that at least one pair of motion vectors is free of outliers
(a high value of Ps will produce a better estimation but more computations, and
viceversa). Its expression is given by (8):

S =
log (1 − Ps)

log [1 − (1 − ε2)]
(8)

where ε is the expected maximum fraction of outliers in SMV Fn.
For each pair of motion vectors, Pmv, RAT parameters are estimated by

solving the equation system presented in (7). The squared residual distance r2
i is

calculated between each motion vector of SMV Fn and those obtained from the
estimated RAT parameters. Then, the median of all r2

i is computed, which is
used as a quality of goodness of each RAT parameter estimation. Therefore, the
best fitting R̂ATe is the RAT parameter estimation with the minimum value of
the median.

The set of inliers vectors Sin is determined through the Median Absolute
Deviation algorithm [10]. This uses the set of r2

i related to R̂ATe to calculate
Sin as in (9):

Sin =
{

mvi ∈ SMV Fn|
(
r2
i

)
<

(
2.5 · β̂

)2
}

(9)

where mvi is a motion vector from SMV Fn that has associated the squared
residual distance r2

i , and β̂ is the inliers scale estimator given by (10):

β̂ = 1.4826 ·
(

1 +
5

(Nmv) − 2

)
·
√

median {r2i } (10)

where Nmv is the total number of motion vectors in SMV Fn.
The majority condition is passed if the cardinal of Sin is equal to or larger

than Nmv

2 , and if so, the members of Sin correspond to background objects. On
the contrary, all motion vectors in SMV Fn will correspond to one or more aerial
targets.

5 Target Detection

This stage detects aerial targets using the set of motion vectors related to aerial
targets, SAT . If background detection fails,SAT is set to SMV Fn. On the contrary,
if background detection successes SAT is set to SMV Fn − Sin, which represents
the set of outliers motion vectors in the previous inliers scale estimation process.
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The edge regions associated to the members of SAT are processed by means
of a morphological close, using as structuring element an square of size D × D,
where D is the mean size of an aerial target. As a result, a set of one or more
connected regions is obtained, each one representing a different aerial target.

6 Results

The system has been tested with real FLIR sequences captured by an interlaced
gray-level infrared camera in 8-12 μm range with a resolution of 512×512 pixels.
For all the tested sequences one field per frame was selected, therefore the image
aspect ratio was modified to 1:2. The camera was mounted on a moving platform
that produced a global motion in the sequences. These sequences are mainly
composed by low-textured sky regions, and only in some frames by reduced cloud
and earth regions. In addition, the sequences are affected by varying illumination
conditions.

Fig. 4 shows the motion vector field estimation process, accomplished in the
Image Motion Estimation stage. Fig. 4(a) shows the original FLIR image with
one aerial target and some cloud and earth regions. Fig. 4(b) presents the forward
sparse motion vector field, computed between In−1 and In, where In is used to
search the best-correspondences with the dilated edge regions of In−1. Fig. 4(c)
shows the backward sparse motion vector field, computed as in Fig. 4(b) but
between In and In−1. And Fig. 4(d) presents the free-error SMV Fn, composed
by those motion vectors of Fig. 4(b) that are coherent with motion vectors of
Fig. 4(c), i.e. have the same module but opposite directions. As can be observed,
Fig. 4(b), (c) and (d) are sparse motion vector field, since only those regions
detected as edges in Section 3.1 are used in the image motion estimation. Notice
that some motion vectors from Fig. 4(b) have been discarded in Fig. 4(d), what
corresponds with those regions that have appeared/disappeared between con-
secutive images due to camera ego-motion; or regions that suffer the aperture
problem [8], and therefore have a low reliability.

Fig. 5 depicts the aerial target detection process. The SMV Fn of Fig. 4(d),
resulting from the Image Motion Estimation stage, is analyzed to detect motion
vectors belonging to background or aerial target regions, as shown in Fig. 5(a)
(background and aerial target motion vectors are enclosed by a discontinued
rectangle and a discontinued oval respectively). Only aerial target motion vectors
are morphological processed to segment aerial targets. In this case, the only aerial
target is satisfactory segmented, as shown in Fig. 5(b).

Fig. 6 shows another example of the aerial target detection, but with two
different aerial target and without any background regions, as shown in Fig. 6(a)
(the image has been cropped around the aerial targets to show the process with
more clarity). Therefore, the analysis of the corresponding SMV Fn classifies
both connected regions as belonging to aerial target regions (Fig. 6(b), as in
Fig. 5(a) aerial target motion vectors are enclosed by discontinued ovals), since
the background presence conditions (4) have not been passed. Finally, both aerial
targets are segmented through morphological operations, as shown in Fig. 6(c).
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(a)

(b)

(c)

(d)

Fig. 4. (a) Original FLIR image, (b) forward sparse motion vector field, (c) backward
sparse motion vector field and (d) free-error SMV F
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(a)( )

(b)

Fig. 5. (a) Motion vector classification of Fig 4(d) into background objects and aerial
targets; (b) Aerial target segmentation, obtained by the morphological processing of
the regions associated to aerial target motion vectors

(a) (b)

(c)

Fig. 6. (a) The cropped original FLIR image containing two aerial targets; (b) motion
vector classification of the SMV F n, obtained from (a) and the previous image in the
sequence; (c) morphological segmentation of the two aerial targets presented in (a),
using the motion vectors from (b)
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The proposed target detection is efficient with targets of reduced size. However,
when the target area is less than 50 pixels, its performance begins decreasing.

The entire set of FLIR sequences has been processed, obtaining an average
detection rate of 98.2% and an average false alarm rate of 3.8%, using the fol-
lowing parameters: Pf = 1

512×512 , Npix = 256, ε = 0.4 and Ps = 0.9999. These
results demonstrate the excellent performance of this detection strategy.

7 Conclusions

A novel strategy for detecting aerial moving targets in airborne FLIR imagery
has been presented in this paper. Instead of compensating the camera ego-
motion for applying static-oriented motion-based techniques, the proposed strat-
egy directly analyzes the image motion (calculated as a motion vector field) to
separately cluster background and aerial target regions. The aerial targets are
segmented by morphologically processing the aerial target regions. In order to
achieve this detection, the computation of a free-error motion vector field is re-
quired. This is accomplished by the combination of two strategies: using only
the edge regions to compute the motion vectors; and testing the coherency of
the motion vectors belonging to the forward and backward motion vector fields.
In addition to the gained reliability, a low complexity is achieved, since only
a reduced set of image regions is processed. The results presented in Section 6
demonstrate the high efficient of this detection strategy, which is able to accu-
rately detect multiple aerial targets under ego-motion and clutter conditions.

Acknowledgements

This work has been partially supported by the Ministerio de Ciencia y Tecnoloǵıa
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