
Motion estimation through efficient matching of a reduced
number of reliable singular points

Carlos R. del-Blancoa, Fernando Jaureguizarb, Luis Salgadoc and Narciso Garćıad
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ABSTRACT

Motion estimation in video sequences is a classical intensive computational task that is required for a wide
range of applications. Many different methods have been proposed to reduce the computational complexity,
but the achieved reduction is not enough to allow real time operation in a non-specialized hardware. In this
paper an efficient selection of singular points for fast matching between consecutive images is presented, which
allows to achieve real time operation. The selection of singular points lies in finding the image points that
are robust to the noise and the aperture problem. This is accomplished by imposing restrictions related to
the gradient magnitude and the cornerness. The neighborhood of each singular point is characterized by a
complex descriptor vector, which presents a high robustness to illumination changes and small variations in the
3D camera viewpoint. The matching between singular points of consecutive images is performed by maximizing
a similarity measure based on the previous descriptor vector. The set of correspondences yields a sparse motion
vector field that accurately outlines the image motion. In order to demonstrate the efficiency of this approach, a
video stabilization application has been developed, which uses the sparse motion vector field as input. Excellent
results have been obtained in synthetic and real sequences, demonstrating the efficiency of the proposed motion
estimation technique.
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1. INTRODUCTION

A number of different techniques has been proposed for the estimation of motion in video sequences. The
techniques1–3 that yield a dense motion vector field demand a high computational power that can only be
reached by means of specialized hardware. But the use of specialized hardware is expensive and needs a specific
implementation. On the other hand, block-matching techniques generate a non-dense motion vector field, in
which each motion vector represents the motion of a rectangular region in the image. A large reduction in the
computational burden is achieved combining these block techniques with gradient minimization methods,4,5 used
to find the best correspondence of each block. However, the quality of the estimation can be seriously affected
by the aperture problem.6 Feature oriented techniques7–9 overcome this problem computing only the motion
at points with a distinguishing feature such as, for example, the cornerness. Nevertheless, illumination changes
and little variations of 3D viewpoint can still produce a lot of erroneous motion vectors, which can not be easily
detected.

In this paper a real-time motion estimation technique is proposed, which is robust to noise, the aperture
problem, illumination changes and small variations of 3D viewpoint. Real-time processing is achieved through
the combination of two strategies: restricting the motion estimation to a reduced set of singular points and using
properly look-up tables to avoid the computation of complex mathematical operations. The selection of singular
points is carried out by imposing three different restrictions: the first one selects the points with a gradient
magnitude response greater than the image noise level, obtaining SPgm. The second one rejects, among those in
SPgm, the points with low cornerness, i.e. points located in straight edges. The resulting set, SPcor, is composed
by those points that globally stand out by their gradient magnitude and cornerness. The final selection, SPfin,
is obtained by applying a non-maximal suppression algorithm in the cornerness space, what removes points
that are not very significative in comparison with their neighborhood. Points in SPfin are the most reliable
cues to estimate the image motion, since image points that are specially affected by the noise and the aperture
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problem have been discarded. Each singular point in SPfin is characterized by a sophisticated descriptor which
is particularly robust to illuminations changes and small variations in the 3D viewpoint. In order to compute
the descriptor, an array of gradient phase histograms in the neighborhood of each singular point is calculated.
The concatenation of the bins of all histograms forms the descriptor DVhist, which is normalized to the unit
length to minimized the influence of illumination changes, resulting in DVfin. Singular points of consecutive
images are matched using the Euclidean distance between the corresponding descriptor as similarity measure.
Erroneous correspondences are discarded comparing its similarity measure with the one related to the second
best correspondence. The set of matchings yields an accurate and sparse motion vector field, SMV F , that
represents the motion in the image. In order to demonstrate the efficiency of the proposed motion estimation
technique, a video stabilization application based on the computed SMV F is developed.

The organization of the paper is as follows: in Sec. 2 the strategy to select reliable singular points for
motion estimation is presented. The descriptor used to characterize each singular point is explained in Sec. 3.
Section 4 describes the matching between singular points. The look-up tables used to reduce the processing
time are explained in Sec. 5, and Sec. 6 presents a video stabilization application based on the proposed motion
estimation technique. Results about processing times and the quality of the motion estimation are shown in Sec.
7. Finally, the conclusions are presented in Sec. 8.

2. SELECTION OF SINGULAR POINTS

A chain of restrictions is imposed to the image points to select the best ones in order to compute the image
motion. The first restriction selects the points whose gradient magnitude value is above a noise-adaptive threshold
(Thgm), obtaining SPgm. The image gradient magnitude, ‖∇I(x, y)‖ =

√
I2
x + I2

y , is calculated using a look-up

table (described in Sec. 5) to reduce the processing time. The gradient magnitude image is thresholded by
Thgm, which is computed as a function of the image noise distribution. Assuming image noise as Gaussian, the
corresponding image gradient magnitude has a Rayleigh distribution10 (see Eq. (1)).

R(‖∇I(x, y)‖) =
‖∇I(x, y)‖

σ2
e−

‖∇I(x,y)‖2

2σ2 (1)

Then, Thgm is computed as a function of the Rayleigh parameter, σ, by means of Eq. (2),

Thgm = σ
√
−2 ln(Pf ) (2)

where Pf is the acceptable proportion of low reliable singular points due to noise peaks. In real images the
estimation of σ is a hard problem, since the gradient magnitude distribution is a combination of different sources
of noise and edges that contaminate the expected Rayleigh distribution. The Rosin’s approach11 based on the
Least Median Squares algorithm (LMedS) computes a good approximation of σ by means of the Eq. (3),

σ̂ = 0.968min
j

(median∀i(H(i) − j)2) (3)

where H(i) is the histogram count of gradient magnitude i, and 0.968 is a correction factor that relates the
LMedS estimation of an uncontaminated Rayleigh distribution with σ. Figure 1(a) shows an intensity image
and Fig. 1(b) its normalized histogram of the gradient magnitude along with several estimations obtained by
different algorithms. As can be observed, the LMedS algorithm produces the best estimation in comparison with
the mean (Eq. (4)), the median (Eq. (5)) and the maximum likelihood estimations (Eq. (6)),

σ =

√
2
π
· R(‖∇I(x, y)‖) (4)

σ =
median(‖∇I(x, y)‖)√

ln(4)
(5)
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Figure 1. An original intensity image is shown in (a) and its normalized histogram of gradient magnitude in (b) along
with the estimations obtained by the LMedS, mean, median and Maximum Likelihood Estimation algorithms (MLE).

σ =

√
1

2N
·

N∑
‖∇I(x, y)‖2 (6)

where N is the total number of pixels in the image.

Figure 2 shows the points in SPgm, resulting of thresholding the gradient magnitude image by Thgm.

The points of SPgm located along straight edges are not very reliable to estimate their motion since they
are very sensitive to small amounts of noise. These points are characterized by a low cornerness response, what
means that they have a large principal curvature along the edge but a small one in the perpendicular direction.
The principal curvatures of a point are proportional to the eigenvalues of the Hessian matrix, H, calculated in
the location of the point. In order to reduce the computational cost the approach of Harris and Stephen12 is
adopted, which computes the ratio of the principal curvatures without explicitly calculating the eigenvalues. The
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Figure 2. Singular points belonging to SPgm (in white), for the original image presented in Fig 1(a).

trace (Tr) and the determinant (Det) of H are computed as in Eq. (7) and Eq. (8) respectively,

Tr(H) = Dxx + Dyy (7)

Det(H) = DxxDyy − (Dxy)2 (8)

where Dxx, Dyy and Dxy are the elements of H (see Eq. (9)), which are calculated using a Sobel filter as
derivative operator.

H =
[

Dxx Dxy

Dxy Dyy

]
(9)

The ratio between the largest and smallest eigenvalue magnitudes, Reig, is related to Tr and Det as shown
in Eq. (10).

Tr(H)2

Det(H)
=

(Reig + 1)2

Reig
(10)

The value (Reig+1)2

Reig
is minimum when the two eigenvalues are equal (maximum cornerness) and it increases with

Reig. Therefore, Eq. (11) can be used to check that the cornerness of a point is larger than a threshold Thcor.

Tr(H)2

Det(H)
<

(Reig + 1)2

Reig
= Thcor (11)

As result of applying the cornerness restriction, SPcor is obtained, which is composed by the points that
globally have the most significant values of gradient magnitude and cornerness. Nevertheless, several points lying
in the same neighborhood will result little distinctive. Therefore, a non-maximal suppression in the cornerness
space is applied to obtained the final selection of singular points, SPfin, which locally selects the most significant
points. Figure 3(a) and (b) respectively show the points in SPcor and in SPfin from the singular points presented
in Figure 2.
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Figure 3. (a) shows the singular points belonging to SPcor, and (b) the singular points in SPfin.

3. DESCRIPTION OF SINGULAR POINTS

The descriptor used to characterize the neighborhood of each singular point must be very distinctive in order to
match correctly the singular points between two consecutive images. In addition, it must be as robust as possible
to variations produced by noise, rotations, changes in illumination, 3D viewpoint and non-rigid deformations.
Classical descriptors based on a patch of intensity or gradient values are very sensitive to the aforementioned
variations. On the other hand, the descriptors that compute the intensity or gradient histogram are more robust
but their distinctiveness is significantly lower. Lowe13–15 proposed a combination of both strategies that imitates
the biological vision of human beings. Lowe’s approach consists in allowing small shiftings in the localization of
gradient values for computing a similarity measure, rather than computing it in precise localizations. In order
to compute the Lowe’s descriptor, the gradient magnitude and phase are calculated in the neighborhood of the
singular point defined by a squared window named description window. This is carried out by means of look-up
tables, as it is explained in Sec. 5, to reduce the computational cost.

Figure 4. Computation of an array of orientation histograms inside the descriptor window, used to generate the descriptor
of a singular point market as X, for Nh = 2, Np = 4 and Nd = 8.
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The gradient magnitude is smoothed by a Gaussian function centered in the singular point and with a standard
deviation equal to one half the width of the descriptor window. This Gaussian weighting gives less emphasis
to gradient values that are far from the center of the singular point, avoiding sudden changes in the descriptor
due to small changes in the position of the descriptor window. The descriptor window is divided into Nh × Nh

squared regions composed by Np × Np pixels each one. Then, an orientation histogram is computed in each
region. An orientation histogram is defined as a gradient phase histogram composed by Nd bins, where the bin
contributions are the gradient magnitude values. Figure 4 shows an example of an array of orientation histograms
computed in the descriptor window. The strategy of splitting the neighborhood into several histograms allows
for small positional shifts, since the gradient magnitude of a pixel contributes to the same histogram as long as
its location keeps inside of the same squared region. However, the descriptor can still abruptly change if the
positional shift of the gradient magnitude modifies the histogram contribution, or if a smooth variation of the
gradient phase changes the phase bin contribution. A trilinear interpolation solves this problem by distributing
each gradient magnitude value into adjacent orientation histograms. This means that each orientation histogram
entry is multiplied by three different weights: wh, wv and wp, which are computed as in Eqs. (12), (13) and (14),

wh = 1 − (
x

Nh
− � x

Nh
�) (12)

wv = 1 − (
y

Nh
− � y

Nh
�) (13)

wp = 1 − (
θ

Nd
− � θ

Nd
�) (14)

where x and y are the coordinates of the gradient magnitude location; θ is the gradient phase in degrees; and ��
means the nearest lowest integer.

The descriptor, DVhist, is formed by concatenating the phase bins of all orientation histograms by raws, as
in Eq. (15). The resulting descriptor has a length of: LDV = Nh × Nh × Nd,

DVhist = [Hist(1,1)(1),Hist(1,1)(2), ...Hist(r,s)(i), ..,Hist(Nh,Nh)(Nd)]; 0 < i < Nd, 0 < j < Nh (15)

where Histr,s(i) is the ith bin of the orientation histogram of coordinates (r, s).

DVhist is invariant to brightness changes, which result from a constant added to each image pixel, as it uses
gradient values rather than intensity values. However, contrast changes, in which each pixel value is multiplied
by the same constant, affects the value of the descriptor vector. This is overcome by normalizing DVhist to unit
length, which makes the descriptor invariant to affine illumination changes, but it is not invariant to non-linear
illumination changes, such as camera saturation and puntual illumination sources. These non-linear illumination
changes can cause large changes in the gradient magnitude, but they do not affect so much to the gradient phase.
Based on this fact, each component of the descriptor is limited to a maximum value, Thillu, thus reducing the
influence of the gradient magnitude while giving more emphasis to the gradient phase. Normalizing again the
previous result, the final version of the descriptor, DVfin, is obtained.

4. MATCHING OF SINGULAR POINTS

Singular points of consecutive images, SPn
fin and SPn+1

fin , are matched by means of the Euclidean distance
computed in the descriptor domain, which is used as similarity measure. Camera frame rate is assumed to be
high enough to consider a slow motion between frames. Therefore, the matching can be restricted to singular
points whose distance to each other is less than a threshold, Thdist. This restriction not only reduces the
computational cost but also improves the matching accuracy, since the descriptor vector of the singular point
only must be enough distinctive in its neighborhood, rather than in the whole image. Matching between a
singular point �pi belonging to SPn

fin and the set of singular points of SPn+1
fin is computed as in Eq. (16),

Match(�pi ∈ SPn
fin) = min

�pj∈SP n+1
pj

‖DVfin(�pi) − DVfin(�pj)‖ (16)
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Figure 5. (a) and (b) respectively shows the SMV F between two images before and after verifying the second best
matching condition.

where ‖ ‖ is the Euclidean distance and SPn+1
pj

= {pj ∈ SPn+1
fin | ‖�pi − �pj‖ < Thdist}, i.e. the set of singular

points of SPn+1
fin whose distante to �pi is less than Thdist.

Distances in the descriptor domain between the first and second best matching of a point are compared
to determine the reliability of each correspondence. A correct correspondence must satisfied the condition
dFM > 0.51dSM , where dFM and dSM are respectively the Euclidean distances between the corresponding
descriptor vectors of the first and second best matching. Correspondences that fulfill the previous condition
represents a motion vector of the sparse motion vector field, SMV F . Figures 5(a) and (b) respectively show the
SMV F between two images before and after applying the condition of correct correspondence. In this example,
the image in instant n + 1 is a noisy and translated version of the first one in instant n, therefore the outliers
are easily identified. Figure 5(a) contains several outliers near to the margins, which have been discarded in
Fig. 5(b).

5. LOOK-UP TABLES

The proposed motion estimation strategy uses three different look-up tables in order to reduce the computational
cost. A look-up table is used to calculate the gradient magnitude. The table stores the precalculated values of
the gradient magnitude, according to the ranges of the horizontal and vertical image gradient. Then, to compute
a specific gradient magnitude value, the horizontal and vertical gradient values are used as indexes to the table.
The computation of the gradient phase is performed in a similar way. In this case, the table contains gradient
phase values.

The last look-up table is used to compute the trilinear interpolation related to the descriptor of a singular
point. The table stores weighting factors and bin contributions for the phase histograms. The table indexes are
the pixel coordinates belonging to the singular point neighborhood, and the gradient phase value of the pixel.

Processing times for computing the gradient magnitude, the gradient phase and the descriptor have been
measured using and without using look-up tables. The time measures have been performed with a 2.00 GHz T2500
Intel Core Duo Mobile PC, using a 320×240 pixel image in which 211 singular points have been detected. Table 1
shows the processing times in milliseconds, in which the measure corresponding to the descriptor represents the
total time for computing all 211 singular points. A reduction in the processing time can be observed in all cases,
specially in the gradient phase computation.
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Table 1. Processing times in milliseconds of the gradient magnitude, the gradient phase and the descriptor vector using
and without using a look-up table.

With Look-up Table (ms) Without Look-up Table (ms)

Gradient Magnitude 1.2 3.5

Gradient Phase 1.2 10.7

Descriptor 13.2 19.4

6. VIDEO STABILIZATION APPLICATION

The proposed real-time motion estimation technique can be used in a wide range of applications that do not
require a dense motion vector field. In this section its application for video stabilization is described to show
its performance and accuracy. This application removes the camera ego-motion, i.e. the motion induced in the
image by the own camera motion, that typically arises using a hand-held camera or due to the instability of the
platform where it is placed. This is achieved by using SMV F to estimate the best affine transformation, ATB ,
that describes the camera motion. The affine transformation is described by Eq. (17),

⎡
⎣

xn

yn

1

⎤
⎦ =

⎡
⎣

a b c
d e f
0 0 1

⎤
⎦ ·

⎡
⎣

xn+1

yn+1

1

⎤
⎦ (17)

where a, b, d and e are the parameters of a linear transformation; c and f are respectively horizontal and vertical
translation; and, xn, yn, xn+1, yn+1 are the coordinates of a pixel in the previous image, In, and in the current
image In+1.

The parameters of AT are estimated using RANSAC, a robust iterative parameter estimation technique
that rejects outlier motion vectors (due to erroneous motion vectors or moving objects). RANSAC16,17 ran-
domly selects Nmv motion vectors from SMV F . Then, ÂT is estimated from them through the Least Mean
Squares algorithm (LMS). The number of inliers in SMV F with regard to ÂT is calculated by thresholding the
corresponding residuals, as it is shown in Eq (18),

Nin = { �mvi ∈ SMV F | ‖�pori − ATB · �pext‖ < Thin} (18)

where �pori and �pext are respectively the origin and extremum of the motion vector �mvi; and Thin is the maximum
residual distance allowed, whose value has been heuristically fixed to 4.

If the number of inliers is equal or greater than 50% of the total number of motion vectors in SMV F (which
represents the breakdown point of the RANSAC algorithm), the ÂT is chosen as ATB , i.e. the best affine
transformation. Otherwise, another set of Nmv motion vectors is selected, and the entire process is repeated up
to a maximum of Nit times. This maximum number of iterations is calculated as in Eq. (19),

Nit =
log (1 − Ps)

log [1 − (1 − εNmv )]
(19)

which ensures that al least a set of Nmv motion vectors is free of outliers with a probability Ps, given a maximum
fraction of outliers ε.

If after Nit iterations, no ÂT has passed the condition of minimum number of inliers, the image can not be
stabilized, what occurs in cases of rarely large displacement of the camera. Under normal conditions ATB is
obtained, which is used to compute the compensated location of each pixel. The stabilized image is obtained
by applying a bilinear interpolation over the non-integers coordinates resulting of applying the affine transfor-
mation. Figure 6 shows the Peak Signal to Noise Ratio (PSNR) of a stabilized and an unstabilized sequence,
respectively represented by a solid line and a dashed line. The PSNR measures the quality of a compensated
image compared to the original image, and its value is increased according to the quality of the compensation.
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Figure 6. PSNR measures of the unstabilized (dashed line) and stabilized (solid line) video sequence.

As can be observed, the PSNR measure of the stabilized sequence is higher and more stable along the time
than the unstabilized sequence. This demonstrates the high accuracy and performance of the video stabilization
application in combination with the proposed real-time motion estimation technique.

7. RESULTS

Different types of experiments has been carried out to test the performance and efficiency of the proposed motion
estimation technique and to find the descriptor parameters that maximizes the ratio of correct correspondences
(defined as the quotient of the correct correspondences and the total number of correspondences) while minimize
the computation time. Using these parameters, the robustness of the motion estimation technique to noise and
rotation has been tested. Finally, the dependency between the number of detected singular points in an image
and the processing time is shown. For the experiments have been used a 2.00 GHz T2500 Intel Core Duo Mobile
PC with a set of 320 × 240 pixel images.

Table 2 shows the ratio of correct correspondences, Rcc, and the processing times for several combinations of
the descriptor parameters Nh, Np and Nd. These results have been obtained using an image and the same image
translated 16 pixels in the horizontal and vertical axes. A Gaussian noise of µN = 0 and σN = 2 has been added
to both images. As it is expected, the processing time increases with the value of the descriptors parameters. This
increment is more significative for Nh and Np, since they control the size of the neighborhood of each singular
point that is used to computed the descriptor. The ratio of correct correspondences also increases with the value
of the descriptors parameters. Again, Nh and Np are the most influential parameters, since the distinctiveness
of the descriptor increases with the area of the neighborhood of the singular point. A good compromise between
performance and computational cost is obtained by selecting Nh = 4, Np = 4 and Nd = 8, which will be used in
the rest of experiments.

The robustness to the noise has been measured by means of Rcc. The images used are the same as for Table 2,
but adding different levels of Gaussian noise of mean µN = 0 and standard deviation σN . Table 3 shows the
obtained results. As it is expected, Rcc decreases as σN value increases. However, its value keeps high even for
elevated values of noise.

Table 4 shows the robustness of the motion estimation technique to rotation changes, measured through Rcc

and the total number of correspondences, NTC . An image and the same image rotated θ degrees have been used,
to which a Gaussian noise of µN = 0 and σN = 2 has been added. As can be observed, Rcc is very stable with
the rotation angle, while NTC decreases. The conclusion is that the motion estimation technique is robust to
rotation changes, but not invariant.
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Table 2. Influence of the descriptor parameters Nh, Np and Nd in the ratio of correct correspondences (Rcc) and in the
processing time in milliseconds. The results have been obtained using an image and the same image translated 16 pixels
in the horizontal and vertical axes.

Nh Np Nd Rcc Processing time (ms)

2 4 8 0.84 12.9

4 4 8 0.89 25.8

6 4 8 0.92 48.9

8 4 8 0.93 84.9

4 2 8 0.85 15.6

4 6 8 0.91 46.6

4 8 8 0.92 78

4 4 4 0.87 24.1

4 4 6 0.88 24.7

4 4 10 0.89 25.8

4 4 12 0.91 26.6

Table 3. Robustness of the motion estimation technique to noise, measured by means of the ratio of correct correspondences
(Rcc). A Gaussian noise of mean µN = 0 and standard deviation σN has been added to the images.

σN 0 1 2 3 4 5 6 7 8 9 10

Rcc 0.95 0.93 0.89 0.86 0.86 0.81 0.8 0.77 0.74 0.72 0.71

Table 5 shows the dependency of the processing time with the image size and the number of singular points.
A set of images of size 640× 480 and 320× 240 have been used. As it is expected, the processing time increases
with both parameters. The obtained values demonstrate the applicability of the proposed motion estimation
technique for real time requirements.

8. CONCLUSIONS

The presented motion estimation technique is able to compute an accurate sparse motion vector field in real
time without the need of specialized hardware. Real time is accomplished by restricting the motion computation
to a subset of image points, together with the incorporations of three look-up tables to effiently handle complex
mathematical operations. The combination of both strategies allows obtaining processing rates of up to 40 frames
per second (fps) for 320 × 240 pixel images and up to 20 fps for 640 × 480 pixel images, as shown the Sec.7.

The robustness of the motion estimation technique to noise, aperture problem, illumination changes and
small variations in the 3D viewpoint yields sparse motion vector fields of high quality. In addition, the matching
process evaluates the reliability of each correspondence, being able to discard erroneous motion vectors.

Table 4. Robustness of the motion estimation technique to image rotation (indicated by θ), measured through Rcc and
NTC .

θ 1 2 3 4 5 6 7 8 9 10

Rcc 0.71 0.72 0.73 0.75 0.73 0.73 0.73 0.72 0.72 0.71

NTC 149 150 144 128 142 134 137 125 122 114
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Table 5. Processing time in milliseconds as a function of the image size and the number of singular points.

Image size Number of detected points Processing time (ms)

640 × 480 891 99.4

640 × 480 733 86.5

640 × 480 610 75.9

640 × 480 522 68.2

640 × 480 438 61.6

640 × 480 377 57.1

640 × 480 323 55.2

640 × 480 285 51

640 × 480 250 48

640 × 480 218 46

640 × 480 196 44.6

320 × 240 572 74.4

320 × 240 416 50

320 × 240 323 37.2

320 × 240 259 29.6

320 × 240 221 25.2

320 × 240 171 21.9

The sparse motion vector field has been used satisfactory in an application of video stabilization, where the
sparse motion vector field is used to estimate and compensate the camera ego-motion. Other areas of applicability
are the detection of moving objects and mosaicking.
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