120 research outputs found

    Age- and gender-specific reference values for cardiac chamber geometry and function using three-dimensional echocardiography

    Get PDF
    Background. Three-dimensional echocardiography (3DE) enables a comprehensive, accurate and reproducible quantification of cardiac chamber size and function without any geometric assumption about their shape. Superior accuracy and reproducibility of 3DE over stabdard two-dimensional (2DE) approach for cardiac chamber volume measurements in comparison to cardiac magnetic resonance (CMR) has been well documented in a number of studies. Both the European Association of Cardiovascular Imaging and the American Society of Echocardiography recommend 3DE, rather than 2DE, for routine clinical assessment of cardiac chamber volumes. However, both Societes also acknowledge that the application of 3DE into routine clinical practice has been hindered by the limited availability of reference values, and particularly the lack of gender- and anthropometric-based analysis. Therefore, identification of reference values for cardiac chamber size, geometry and function has become a prerequisite for the routine clinical application of quantitative 3DE. Research Project Single-centre, prospective, observational cohort study aimed to: (i). comprehensively analyze the four cardiac chamber geometry and function using state-of-the-art 3DE equipment in a large cohort of healthy volunteers; (ii). assess the effects of age, body size and gender on these parameters; and (iii). compare the values measured using 3DE with those obtained by conventional echocardiography in the same subjects and with other cohorts of healthy subjects from published 3DE studies. Methods. 263 healthy volunteers (43±14 years, range 18-75; 58% women) whose data sets have been acquired from October 2011 to July 2013 using a commercially available 3D echo scanner (Vivid E9, GE Vingmed, Horten, NO) equipped with 4V matrix array probe. Data sets were analyzed with different commercially available (EchoPac BT 12, GEVingmed Horten, NO; 4D RV function, TomTec Imaging system, Unterschleissheim, D ) and prototype (EchoPac BT 13, GEVingmed Horten, NO; 4D LA Tomtec Imaging systems, Unterschleissheim, D) analysis softwares. The study was approved by the University of Padua Ethics Committee (protocol # 2380 P approved on 06/10/2011) and signed informed consent has been obtained in all volunteers before the screening for eligibility in the study. Results Study #1: Analysis of left ventricular (LV) size, geometry and function. In 226 consecutive healthy volunteers (125 women, aged 18-76 years), we performed a comprehensive 3DE analysis of LV parameters and compared them with values obtained by conventional echocardiography. Upper reference values (mean+2 standard deviatons) for 3D LV end-diastolic (EDV) and end-systolic (ESV) volumes were 85 ml/m2 and 34 ml/m2 in men, and 72 ml/m2 and 28 ml/m2 in women, respectively. Indexing LV volumes by body surface area did not eliminate gender differences. Lower reference values (mean-2 standard deviations) for ejection fraction (EF) were 54% in men and 57% in women, while for stroke volume (SV) were 25 ml/m2 and 24 ml/m2, respectively. Upper reference values for LV mass were 97 g/m2 in men and 90 g/m2 in women, while for end-diastolic sphericity index were 0.49 and 0.48, respectively. Significant age-dependency of LV parameters was identified and reported across age groups. 3DE LV volumes were larger, EF was similar, SV and mass were significantly smaller in comparison with the corresponding values obtained by conventional echocardiography. Study #2: Analysis of right ventricular (RV) size and function. RV volumes, SV and EF were measured by 3DE in 540 healthy adult volunteers, prospectively enrolled, evenly distributed across age and gender. The relation of age, gender and body size parameters with RV volumes and EF were investigated using bivariate and multiple linear regressions. Analysis was feasible in 507 (94%) subjects (260 women, age 45±16 years, range 18-90). Age, gender, height and weight significantly influenced RV volumes and EF. Gender effect was significant (p<0.01), with RV volumes larger and EF smaller in men than in women. Older age was associated with smaller volumes (EDV, -5 ml/decade; ESV, -3 ml/decade; SV, -2 ml/decade), and higher EF (+1%/decade). Inclusion of body size parameters in the statistical models resulted in improved overall explained variance for volumes (EDV, R2=0.43; ESV, R2=0.35; SV, R2=0.30), while EF was unaffected. Ratiometric and allometric indexing for age, gender and body size resulted in no significant residual correlation between RV geometry measures and height or weight. Study #3: Analysis left atrial size and function. 244 healthy volunteers (43±14 years, range 18-75; 58% women) underwent 3DE and 2DE to measure maximal (Vmax), minimal (Vmin) and preA (VpreA) LA volumes to calculate total, passive and active LA emptying volumes (TotEV, PassEV, ActEV) and fractions (TotEmptFr, PassEmptFr, ActEemptFr). Feasibility of 3DE and 2DE LA volumes was 91% and 96% (p=0.59 ). 3DE LA volumes were larger than 2DE ones (Vmax: 48±11 ml vs. 43±11 ml; Vmin: 18±5 vs. 14±6, respectively, p<0.001). LA TotEmptFr (61±6% vs. 68±9%) and ActEmptFr (30±7% vs. 47±10%) were lower by 3DE than 2DE (p<0.001), whereas PassEmptFr (44±10% vs. 41±11%) was higher by 3DE than 2DE (p= 0.002). 3DE LA volumes indexed by body surface area were similar in both genders and increased with ageing (p=0.002). Study #4: Analysis of right atrial (RA) size and function. 200 healthy volunteers (43±15 years; 44% men) underwent 2DE and 3DE to measure maximal (Vmax), minimal (Vmin) and preA (VpreA) volumes to derive total (TotEV), passive (PassEV) and true (TrueEV) emptying volumes and emptying fractions (TotEmptFr, PassEmptFr, TrueEmptFr). 3DE volumes (Vmax, 52±15 ml vs 41±14 ml, p<0.0001), EVs (TotSV, 33±10 ml vs. 24±9 ml, p<0.0001) and EmptFrs (TotEmptFr, 63±9% vs. 58±9%, p<0.0001) were larger than 2DE ones. Indexed 3D RA volumes were significantly larger in men than in women. Aging was associated with a significant decrease in passive RA function (PassEV, r= -0.26; PassEmptFr, r= -0.38; all p<0.0001) and an increase in active RA function (TrueEV, r= 0.25; p<0.0001; and TrueEmptFr, r= 0.15; p= 0.035) in order to maintain TotEV (r= -0.14, p= 0.05). Conclusions The present research project provides a comprehensive quantitative analysis of the four cardiac chamber geometry and function using 3DE in a relatively large cohort of Caucasian healthy volunteers with a wide age range. The main results can be summarized as follows: (i). Cardiac chamber quantification with 3DE is feasible and reproducible; (ii) Reference values for cardiac chamber size and function by 3DE were found to be significantly different from those obtained with conventional echocardiography, highlighting the importance of applying method-specific reference values for a reliable identification of remodeling and/or dysfunction of cardiac chambers; (iii). Cardiac chamber parameters measured by 3DE showed excellent reproducibility, and were more robust than 2DE indices at repeated measurements; (iii). Most parameters describing cardiac chamber size should be defined according to age and gender, since indexing them only for BSA does not account for all the physiologic variations in geometry and function. Availability of reference values and age- and gender-specific cut-off values should facilitate the implementation of 3DE to identify cardiac chamber remodelling and dysfunction in both clinical routine and research

    Evaluation of right ventricular function performed by 3d-echocardiography in scleroderma patients

    Get PDF
    The impairment of the right ventricle (RV) in systemic sclerosis (SSc) is usually related to pulmonary arterial hypertension (PAH). New echocardiographic techniques, such as 3-dimensional echocardiography (3DE) and 2-dimensional speckle tracking (2DSTE), allow an accurate evaluation of the RV function. The aim of this study was to evaluate the RV function using 3DE and 2DSTE in SSc patients with no history of heart disease and no PAH. Forty-five SSc patients, 42 females and 3 males, 28 with limited cutaneous SSc (lcSSc) and 17 with diffuse cutaneous SSc (dcSSc), were studied. Forty-three age- and gender-matched healthy subjects were enrolled as controls. All of them underwent a 3DE and 2DSTE ecocardiographic evaluation of the RV function. Systolic pulmonary arterial pressure (sPAP) and total pulmonary vascular resistance (tPVR) were also estimated by power doppler. RV echocardiographic parameters were compared in the different subsets of SSc patients. A statistical analysis was performed by t-test, ANOVA and multiple logistic regression. RV areas in 2DSTE and volumes in 3DE were higher and RV function parameters were reduced in SSc patients compared with controls. Also sPAP and tVPR were higher, but they did not reach pathological values. Echocardiographic alterations were more pronounced in patients with lcSSc. 3DE and 2DSTE echocardiography allowed us to detect morphological and functional alterations of the RV in a group of SSc patients with no clinical signs of heart disease and no PAH. These patients had significantly higher sPAP and tPVR than healthy controls without reporting values compatible with PAH. These data suggest that RV alterations are related to a pressure overload rather than to an intrinsic myocardial involvement in SSc

    3-D Echocardiography Is Feasible and More Reproducible than 2-D Echocardiography for In-Training Echocardiographers in Follow-up of Patients with Heart Failure with Reduced Ejection Fraction

    Get PDF
    Left ventricular volumes (LVVs) and ejection fraction (LVEF) are key elements in the evaluation and follow-up of patients with heart failure with reduced ejection fraction (HFrEF). Therefore, a feasible and reproducible imaging method to be used by both experienced and in-training echocardiographers is mandatory. Our aim was to establish if, in a large echo lab, echocardiographers in-training provide feasible and more reproducible results for the evaluation of patients with HFrEF when using 3-dimensional echocardiography (3-DE) versus 2-dimensional echocardiography (2-DE). Sixty patients with HFrEF (46 males, age: 58 ± 17 y) underwent standard transthoracic 2-D acquisitions and 3-D multibeat full volumes of the left ventricle. One expert user in echocardiography (expert) and three echocardiographers with different levels of training in 2-DE (beginner, medium and advanced) measured the 2-D LVVs and LVEFs on the same consecutive images of patients with HFrEF. Afterward, the expert performed a 1-mo training in 3-DE analysis of the users, and both the expert and trainees measured the 3-D LVVs and LVEF of the same patients. Measurements provided by the expert and all trainees in echo were compared. Six patients were excluded from the study because of poor image quality. The mean end-diastolic LVV of the remaining 54 patients was 214 ± 75 mL with 2-DE and 233 ± 77 mL with 3-DE. Mean LVEF was 35 ± 10% with 2-DE and 33 ± 10% with 3-DE. Our analysis revealed that, compared with the expert user, the trainees had acceptable reproducibility for the 2-DE measurements, according to their level of expertise in 2-DE (intra-class coefficients [ICCs] ranging from 0.75 to 0.94). However, after the short training in 3-DE, they provided feasible and more reproducible measurements of the 3-D LVVs and LVEF (ICCs ranging from 0.89-0.97) than they had with 2-DE. 3-DE is a feasible, rapidly learned and more reproducible method for the assessment of LVVs and LVEF than 2-DE, regardless of the basic level of expertise in 2-DE of the trainees in echocardiography. In echo labs with a wide range of staff experience, 3-DE might be a more accurate method for the follow-up of patients with HFrEF

    Atrial functional tricuspid regurgitation: a novel and underappreciated clinical entity

    Get PDF
    Abstract Functional or secondary tricuspid regurgitation (FTR) is a progressive disease with a significant negative impact on patient morbidity and mortality. Recently, atrial fibrillation (AF) has been recognized as a cause of FTR (with/without coexisting functional mitral regurgitation) by promoting right atrial (RA) remodeling and secondary tricuspid valve (TV) annulus dilation, even in the absence of right ventricular (RV) dilation or dysfunction. This distinct form of FTR has been called "atriogenic" or "atrial". Recent evidence suggests that the RA is an important player in FTR pathophysiology not only for patients with AF, but also for those in sinus rhythm. Preliminary reports on atrial FTR show that cardioversion with documented maintenance of sinus rhythm promotes TV annulus and RA reverse remodeling and may significantly reduce FTR severity at follow-up. Large-scale studies on the prognostic benefits of rhythm vs rate-control strategy in atrial FTR patients are needed to substantiate specific guidelines indications for this subset of patients

    An accurate and time-efficient deep learning-based system for automated segmentation and reporting of cardiac magnetic resonance-detected ischemic scar

    Get PDF
    Background and objectives: Myocardial infarction scar (MIS) assessment by cardiac magnetic resonance provides prognostic information and guides patients' clinical management. However, MIS segmentation is time-consuming and not performed routinely. This study presents a deep-learning-based computational workflow for the segmentation of left ventricular (LV) MIS, for the first time performed on state-of-the-art dark-blood late gadolinium enhancement (DB-LGE) images, and the computation of MIS transmurality and extent.Methods: DB-LGE short-axis images of consecutive patients with myocardial infarction were acquired at 1.5T in two centres between Jan 1, 2019, and June 1, 2021. Two convolutional neural network (CNN) mod-els based on the U-Net architecture were trained to sequentially segment the LV and MIS, by processing an incoming series of DB-LGE images. A 5-fold cross-validation was performed to assess the performance of the models. Model outputs were compared respectively with manual (LV endo-and epicardial border) and semi-automated (MIS, 4-Standard Deviation technique) ground truth to assess the accuracy of the segmentation. An automated post-processing and reporting tool was developed, computing MIS extent (expressed as relative infarcted mass) and transmurality.Results: The dataset included 1355 DB-LGE short-axis images from 144 patients (MIS in 942 images). High performance (&gt; 0.85) as measured by the Intersection over Union metric was obtained for both the LV and MIS segmentations on the training sets. The performance for both LV and MIS segmentations was 0.83 on the test sets.Compared to the 4-Standard Deviation segmentation technique, our system was five times quicker ( &lt;1 min versus 7 +/- 3 min), and required minimal user interaction. Conclusions: Our solution successfully addresses different issues related to automatic MIS segmentation, including accuracy, time-effectiveness, and the automatic generation of a clinical report.(c) 2022 Elsevier B.V. All rights reserved

    Application of AI in cardiovascular multimodality imaging

    Get PDF
    Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is focused on detection of stenosis, characterization of coronary plaques, and detection of myocardial ischemia. In cardiac magnetic resonance (CMR) the application of AI is focused on post-processing and particularly on the segmentation of cardiac chambers during late gadolinium enhancement. In echocardiography, the application of AI is focused on segmentation of cardiac chambers and is helpful for valvular function and wall motion abnormalities. The common thread represented by all of these techniques aims to shorten the time of interpretation without loss of information compared to the standard approach. In this review we provide an overview of AI applications in multimodality cardiac imaging

    Oxidative Stress in Structural Valve Deterioration : A Longitudinal Clinical Study

    Get PDF
    The cause of structural valve deterioration (SVD) is unclear. Therefore, we investigated oxidative stress markers in sera from patients with bioprosthetic heart valves (BHVs) and their association with SVD. Blood samples were taken from SVD (Phase A) and BHV patients during the first 24 (Phase B1) and >48 months (Phase B2) after BHV implantation to assess total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrotyrosine (NT). The results show that MDA levels increased significantly 1 month after surgery in all groups but were higher at 6 months only in incipient SVD patients. NT levels increased gradually for the first 24 months after implantation in the BHV group. Patients with transcatheter aortic valve implantation (TAVI) showed even higher levels of stress markers. After >48 months, MDA and NT continued to increase in BHV patients with a further elevation after 60-72 months; however, these levels were significantly lower in the incipient and established SVD groups. In conclusion, oxidative stress may play a significant role in SVD, increasing early after BHV implantation, especially in TAVI cases, and also after 48 months' follow-up, but decreasing when SVD develops. Oxidative stress potentially represents a target of therapeutic intervention and a biomarker of BHV dysfunctio
    • …
    corecore