13 research outputs found

    The Excitation of Guided-waves by Underground Point Source: an Investigation with Theoretical Seismograms

    Get PDF
    AbstractNear-Source scattering of Rg into S appears to be the primary contributor to the low-frequency Lg. The authors further suggest that the prominent low-frequency spectral null in Lg is due to Rg from a compensated linear vector dipole (CLVD) source, and the low-frequency null in Rg excitation is due to a zero-crossing of the horizontal displacement eigenfunctions. In this study, the mechanism of the excitation of Lg from explosions in layered earth structures are analyzed with theoretical seismograms. Our result shows that the CLVD source generates prominent Lg waves,and the null in the Lg spectra showing remarkably good agreement with those expected from Rg due to a CLVD source. We conclude that the derivative of displacement eigenfunction also takes a key role in the excitation of the null, only zero-crossing of the horizantall displacement eigenfunction can not fully explain it

    Responses of Phaseolus calcaltus to lime and biochar application in an acid soil

    Get PDF
    Introduction Rice bean (Phaseolus calcaltus), as an annual summer legume, is always subjected to acid soils in tropical to subtropical regions, limiting its growth and nodulation. However, little is known about its responses to lime and biochar addition, the two in improving soil fertility in acid soils. Materials and Methods In the current study, a pot experiment was conducted using rice bean on a sandy yellow soil (Orthic Acrisol) with a pH of 5.5. The experiment included three lime rates (0, 0.75 and 1.5 g kg−1) and three biochar rates (0, 5 and 10 g kg−1). The biochar was produced from aboveground parts of Solanum tuberosum using a home-made device with temperature of pyrolysis about 500 °C. Results and Discussion The results indicated that both lime and biochar could reduce soil exchange Al concentration, increase soil pH and the contents of soil microbial biomass carbon and microbial biomass nitrogen, and enhance urease and dehydrogenase activities, benefiting P. calcaltus growth and nodulation in acid soils. Lime application did decrease the concentrations of soil available phosphorus (AP) and alkali dispelled nitrogen (AN), whereas biochar application increased the concentrations of soil AP, AN and available potassium (AK). However, sole biochar application could not achieve as much yield increase as lime application did. High lime rate (1.5 g lime kg−1) incorporated with low biochar rate (5 g biochar kg−1) could obtain higher shoot biomass, nutrient uptake, and nodule number when compared with high lime rate and high biochar rate. Conclusion Lime incorporated with biochar application could achieve optimum improvement for P. calcaltus growing in acid soils when compared with sole lime or biochar addition

    An Improved Hilbert Spectral Representation Method for Synthesizing Spatially Correlated Earthquake Ground Motions and Its Error Assessment

    No full text
    This paper is an extension of the random amplitude-based improved Hilbert spectral representation method (IHSRM) that the authors developed previously for the simulation of spatially correlated earthquake ground motions (SCEGMs) possessing the nonstationary characteristics of the natural earthquake record. In fact, depending on the fundamental types (random phase method and random amplitude method) and matrix decomposition methods (Cholesky decomposition, root decomposition, and eigendecomposition), the IHSRM possesses various types. To evaluate the influence of different types of this method on the statistic errors, i.e., bias errors and stochastic errors, an error assessment for this method was conducted. First, the random phase-based IHSRM was derived, and its reliability was proven by theoretical deduction. Unified formulas were given for random phase- and random amplitude-based IHSRMs, respectively. Then, the closed-form solutions of statistic errors of simulated seismic motions were derived. The validness of the proposed closed-form solutions was proven by comparing the closed-form solutions with estimated values. At last, the stochastic errors of covariance (i.e., variance and cross-covariance) for different types of IHSRMs were compared, and the results showed that (1) the proposed IHSRM is not ergodic; (2) the random amplitude-based IHSRMs possessed higher stochastic errors of covariance than the random phase-based IHSRMs; and (3) the value of the stochastic error of covariance for the random phase-based IHSRM is dependent on the matrix decomposition method, while that for the random amplitude-based one is not

    Phenotypic Plasticity and Local Adaptation of Leaf Cuticular Waxes Favor Perennial Alpine Herbs under Climate Change

    No full text
    Six perennial herbs (Plantago asiatica, Polygonum viviparum, Anaphalis lactea, Kobresia humilis, Leontopodium nanum and Potentilla chinensis) widely distributed in alpine meadows were reciprocally transplanted at two sites in eastern edge of Qinghai-Tibetan Plateau, Hongyuan (3434 m, 2.97 °C, 911 mm) and Qilian (3701 m, 2.52 °C, 472 mm), aiming to evaluate the responses of alpine plants to changing environments. When plants were transplanted from Hongyuan to Qilian, most plant species showed a decrease of total wax coverage in first year and reverse trend was observed for some plant species in second year. However, when plants were transplanted from Qilian to Hongyuan, the response of total wax coverage differed greatly between plant species. When compared with those in first year, plasticity index of average chain length of alkane decreased whereas carbon preference index of alkane increased at both Hongyuan and Qilian in second year. The total wax coverage differed between local and transplanted plants, suggesting both environmental and genetic factors controlled the wax depositions. Structural equation modeling indicated that co-variations existed between leaf cuticular waxes and leaf functional traits. These results suggest that alpine herbs adjust both wax depositions and chain length distributions to adapt to changing environment, showing climate adaptations

    Effects of fertilizations on soil bacteria and fungi communities in a degraded arid steppe revealed by high through-put sequencing

    No full text
    Background Fertilization as one of the measures in restoring degraded soil qualities has been introduced on arid steppes in recent decades. However, the fertilization use efficiency on arid steppes varies greatly between steppe types and years, enhancing uncertainties and risks in introducing fertilizations on such natural system to restore degraded steppes. Methods The experiment was a completely randomized design with five fertilization treatments, 0 (Control), 60 kg P ha−1 (P), 100 kg N ha−1 (N), 100 kg N ha−1 plus 60 kg P ha−1 (NP), and 4,000 kg sheep manure ha−1 (M, equaling 16.4 kg P ha−1 and 81.2 kg N ha−1). Soils were sampled from a degraded arid steppe which was consecutively applied with organic and inorganic fertilizers for three years. We analyzed the diversity and abundance of soil bacteria and fungi using high-throughput sequencing technique, measured the aboveground biomass, the soil chemical properties (organic carbon, available and total phosphorus, available and total nitrogen, and pH), and the microbial biomass nitrogen and microbial biomass carbon. Results In total 3,927 OTU (operational taxonomic units) for bacteria and 453 OTU for fungi were identified from the tested soils. The Ace and Chao of bacteria were all larger than 2,400, which were almost 10 times of those of fungi. Fertilizations had no significant influence on the richness and diversity of the bacteria and fungi. However, the abundance of individual bacterial or fungi phylum or species was sensitive to fertilizations. Fertilization, particularly the phosphorus fertilizer, influenced more on the abundance of the AMF species and colonization. Among the soil properties, soil pH was one of the most important soil properties influencing the abundance of soil bacteria and fungi. Discussion Positive relationships between the abundance of bacteria and fungi and the soil chemical properties suggested that soil bacteria and fungi communities in degraded steppes could be altered by improving the soil chemical properties through fertilizations. However, it is still not clear whether the alteration of the soil microbe community is detrimental or beneficial to the degraded arid steppes

    Optimized Regeneration of <i>Petunia</i> Protoplast and Its Association with Tissue Identity Regulators

    No full text
    The popular ornamental plant Petunia is also a valuable model plant in tissue culture. Cellular conversions during differentiation and regeneration have been investigated using various combinations of phytohormones; however, studies on genes for reprogramming toward desired tissue identities have been limited. In this study, we isolated Petunia protoplasts and cultured them in the callus, rooting, or shooting stages, which were used to establish the optimal protoplast culture conditions and to identify genes that epigenetically function as tissue identifiers. The optimal conditions for plasmolysis and enzyme digestion to obtain healthy protoplasts were compared, in which combinations of Viscozyme, Celluclast, and Pectinex (VCP) enzymes were more efficient in isolating protoplasts when followed by 21 to 25% sucrose purification and washing processes. The filtered and washed protoplasts started to divide at 1 day and developed into colonies after 3 weeks of culture, which showed higher efficiency in the Murashige and Skoog (MS) salt culture media compared to that in the Kao and Michayluk (KM) salt media. The pluripotent colonies formed calli on the solid medium supplemented with 3% sucrose after 4 weeks, and were destined to the same cell mass, rooting, or shooting on the regeneration medium. Three epigenetic controllers, ATXR2, ATX4A, and ATX4B, were highly expressed in calli, shoots, and organs of shoots and roots, respectively, confirming that dedifferentiation and regeneration of tissue identity is plastic
    corecore