74 research outputs found

    Group-level differences in social network structure remain repeatable after accounting for environmental drivers

    Full text link
    Individuals show consistent between-individual behavioural variation when they interact with conspecifics or heterospecifics. Such patterns might underlie emergent group-specific behavioural patterns and between-group behavioural differences. However, little is known about (i) how social and non-social drivers (external drivers) shape group-level social structures and (ii) whether animal groups show consistent between-group differences in social structure after accounting for external drivers. We used automated tracking to quantify daily social interactions and association networks in 12 colonies of zebra finches (Taeniopygia guttata). We quantified the effects of five external drivers (group size, group composition, ecological factors, physical environments and methodological differences) on daily interaction and association networks and tested whether colonies expressed consistent differences in day-to-day network structure after controlling for these drivers. Overall, we found that external drivers contribute significantly to network structure. However, even after accounting for the contribution of external drivers, there remained significant support for consistent between-group differences in both interaction (repeatability R: up to 0.493) and association (repeatability R : up to 0.736) network structures. Our study demonstrates how group-level differences in social behaviour can be partitioned into different drivers of variation, with consistent contributions from both social and non-social factors

    The performance of field sampling for parasite detection in a wild passerine

    Full text link
    Parasites can impact the behavior of animals and alter the interplay with ecological factors in their environment. Studying the effects that parasites have on animals thus requires accurate estimates of infections in individuals. However, quantifying parasites can be challenging due to several factors. Laboratory techniques, physiological fluctuations, methodological constraints, and environmental influences can introduce measurement errors, in particular when screening individuals in the wild. These issues are pervasive in ecological studies where it is common to sample study subjects only once. Such factors should be carefully considered when choosing a sampling strategy, yet presently there is little guidance covering the major sources of error. In this study, we estimate the reliability and sensitivity of different sampling practices at detecting two internal parasites-Serratospiculoides amaculata and Isospora sp.-in a model organism, the great tit Parus major. We combine field and captive sampling to assess whether individual parasite infection status and load can be estimated from single field samples, using different laboratory techniques-McMaster and mini-FLOTAC. We test whether they vary in their performance, and quantify how sample processing affects parasite detection rates. We found that single field samples had elevated rates of false negatives. By contrast, samples collected from captivity over 24 h were highly reliable (few false negatives) and accurate (repeatable in the intensity of infection). In terms of methods, we found that the McMaster technique provided more repeatable estimates than the mini-FLOTAC for S. amaculata eggs, and both techniques were largely equally suitable for Isospora oocysts. Our study shows that field samples are likely to be unreliable in accurately detecting the presence of parasites and, in particular, for estimating parasite loads in songbirds. We highlight important considerations for those designing host-parasite studies in captive or wild systems giving guidance that can help select suitable methods, minimize biases, and acknowledge possible limitations. Keywords: McMaster; fecal egg count; field sampling; mini‐FLOTAC; parasite infection; repeatability

    The presence of air sac nematodes in passerines and near-passerines in southern Germany

    Full text link
    Major climatic changes in conjunction with animal movement may be associated with the spread of parasites and their vectors into new populations, with potentially important consequences for population persistence. Parasites can evolve to adapt to unsuitable ecological conditions and take up refuge within new host species, with consequences for the population growth of the new host species. One parasite species that has likely been increasing its geographic range, and potentially infecting new hosts, is the recently described air sac nematode Serratospiculoides amaculata, in great tits (Parus major) in Slovakia. In this study, we screened wild birds for potential air sac nematode infection in a woodland area of southern Germany. We identified four additional host species: Eurasian nuthatch, great spotted woodpecker, greenfinch and robin. As infection by this group of nematodes can be highly pathogenic, we recommend further investigation into its potential risk to these populations

    Male great tits assort by personality during the breeding season

    Get PDF
    Animal personalities can influence social interactions among individuals, and thus have major implications for population processes and structure. Few studies have investigated the significance of the social context of animal personalities, and such research has largely focused on the social organization of nonterritorial populations. Here we address the question of whether exploratory behaviour, a well-studied personality trait, is related to the social structure of a wild great tit, Parus major, population during the breeding season. We assayed the exploration behaviour of wild-caught great tits and then established the phenotypic spatial structure of the population over six consecutive breeding seasons. Network analyses of breeding proximity revealed that males, but not females, show positive assortment by behavioural phenotype, with males breeding closer to those of similar personalities. This assortment was detected when we used networks based on nearest neighbours, but not when we used the Thiessen polygon method where neighbours were defined from inferred territory boundaries. Further analysis found no relationship between personality assortment and local environmental conditions, suggesting that social processes may be more important than environmental variation in influencing male territory choice. This social organization during the breeding season has implications for the strength and direction of both natural and sexual selection on personality in wild animal populations

    Collective decision making and social interaction rules in mixed-species flocks of songbirds

    Get PDF
    Associations in mixed-species foraging groups are common in animals, yet have rarely been explored in the context of collective behaviour. Despite many investigations into the social and ecological conditions under which individuals should form groups, we still know little about the specific behavioural rules that individuals adopt in these contexts, or whether these can be generalized to heterospecifics. Here, we studied collective behaviour in flocks in a community of five species of woodland passerine birds. We adopted an automated data collection protocol, involving visits by RFID-tagged birds to feeding stations equipped with antennae, over two winters, recording 91 576 feeding events by 1904 individuals. We demonstrated highly synchronized feeding behaviour within patches, with birds moving towards areas of the patch with the largest proportion of the flock. Using a model of collective decision making, we then explored the underlying decision rule birds may be using when foraging in mixed-species flocks. The model tested whether birds used a different decision rule for conspecifics and heterospecifics, and whether the rules used by individuals of different species varied. We found that species differed in their response to the distribution of conspecifics and heterospecifics across foraging patches. However, simulating decisions using the different rules, which reproduced our data well, suggested that the outcome of using different decision rules by each species resulted in qualitatively similar overall patterns of movement. It is possible that the decision rules each species uses may be adjusted to variation in mean species abundance in order for individuals to maintain the same overall flock-level response. This is likely to be important for maintaining coordinated behaviour across species, and to result in quick and adaptive flock responses to food resources that are patchily distributed in space and time

    Wild birds respond to flockmate loss by increasing their social network associations to others

    Get PDF
    Understanding the consequences of losing individuals from wild populations is a current and pressing issue, yet how such loss influences the social behaviour of the remaining animals is largely unexplored. Through combining the automated tracking of winter flocks of over 500 wild great tits (Parus major) with removal experiments, we assessed how individuals’ social network positions responded to the loss of their social associates. We found that the extent of flockmate loss that individuals experienced correlated positively with subsequent increases in the number of their social associations, the average strength of their bonds and their overall connectedness within the social network (defined as summed edge weights). Increased social connectivity was not driven by general disturbance or changes in foraging behaviour, but by modifications to fine-scale social network connections in response to losing their associates. Therefore, the reduction in social connectedness expected by individual loss may be mitigated by increases in social associations between remaining individuals. Given that these findings demonstrate rapid adjustment of social network associations in response to the loss of previous social ties, future research should examine the generality of the compensatory adjustment of social relations in ways that maintain the structure of social organizationThe work was funded by an NERC studentship and EGI Research Fellowship to J.A.F. and grants from the ERC and BBSRC (AdG 250164; BB/L006081/1) to B.C.S

    Machine learning reveals cryptic dialects that explain mate choice in a songbird

    Full text link
    Culturally transmitted communication signals – such as human language or bird song – can change over time through cultural drift, and the resulting dialects may consequently enhance the separation of populations. However, the emergence of song dialects has been considered unlikely when songs are highly individual-specific, as in the zebra finch (Taeniopygia guttata). Here we show that machine learning can nevertheless distinguish the songs from multiple captive zebra finch populations with remarkable precision, and that ‘cryptic song dialects’ predict strong assortative mating in this species. We examine mating patterns across three consecutive generations using captive populations that have evolved in isolation for about 100 generations. We cross-fostered eggs within and between these populations and used an automated barcode tracking system to quantify social interactions. We find that females preferentially pair with males whose song resembles that of the females’ adolescent peers. Our study shows evidence that in zebra finches, a model species for song learning, individuals are sensitive to differences in song that have hitherto remained unnoticed by researchers
    • 

    corecore