1,752 research outputs found

    Properties and Decays of the Bc+B_c^+ meson

    Full text link
    Recent studies of properties and decays of the Bc+B_c^+ meson by the LHC experiments are presented. Mass and lifetime measurements are discussed and some of the many new observed decays are reported.Comment: Presented at the 2014 Flavor Physics and CP Violation (FPCP-2014), Marseille, France, May 26-30 2014, 10 pages, 6 figure

    Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks

    Full text link
    The increasing luminosities of future Large Hadron Collider runs and next generation of collider experiments will require an unprecedented amount of simulated events to be produced. Such large scale productions are extremely demanding in terms of computing resources. Thus new approaches to event generation and simulation of detector responses are needed. In LHCb, the accurate simulation of Cherenkov detectors takes a sizeable fraction of CPU time. An alternative approach is described here, when one generates high-level reconstructed observables using a generative neural network to bypass low level details. This network is trained to reproduce the particle species likelihood function values based on the track kinematic parameters and detector occupancy. The fast simulation is trained using real data samples collected by LHCb during run 2. We demonstrate that this approach provides high-fidelity results.Comment: Proceedings for 19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research. (Fixed typos and added one missing reference in the revised version.

    Towards Reliable Neural Generative Modeling of Detectors

    Full text link
    The increasing luminosities of future data taking at Large Hadron Collider and next generation collider experiments require an unprecedented amount of simulated events to be produced. Such large scale productions demand a significant amount of valuable computing resources. This brings a demand to use new approaches to event generation and simulation of detector responses. In this paper, we discuss the application of generative adversarial networks (GANs) to the simulation of the LHCb experiment events. We emphasize main pitfalls in the application of GANs and study the systematic effects in detail. The presented results are based on the Geant4 simulation of the LHCb Cherenkov detector.Comment: 6 pages, 4 figure

    Muon identification for LHCb Run 3

    Full text link
    Muon identification is of paramount importance for the physics programme of LHCb. In the upgrade phase, starting from Run 3 of the LHC, the trigger of the experiment will be solely based on software. The luminosity increase to 2×10332\times10^{33} cm2^{-2}s1^{-1} will require an improvement of the muon identification criteria, aiming at performances equal or better than those of Run 2, but in a much more challenging environment. In this paper, two new muon identification algorithms developed in view of the LHCb upgrade are presented, and their performance in terms of signal efficiency versus background reduction is shown

    Fabrication and Characterisation of 3D Diamond Pixel Detectors With Timing Capabilities

    Get PDF
    Diamond sensors provide a promising radiation hard solution to the challenges posed by the future experiments at hadron machines. A 3D geometry with thin columnar resistive electrodes orthogonal to the diamond surface, obtained by laser nanofabrication, is expected to provide significantly better time resolution with respect to the extensively studied planar diamond sensors. We report on the development, production, and characterisation of innovative 3D diamond sensors achieving 30% improvement in both space and time resolution with respect to sensors from the previous generation. This is the first complete characterisation of the time resolution of 3D diamond sensors and combines results from tests with laser, beta rays and high energy particle beams. Plans and strategies for further improvement in the fabrication technology and readout systems are also discussed

    Measurement of the mass and lifetime of the Ωb\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 ΩbΩc0π\Omega_b^-\to\Omega_c^0\pi^-, Ωc0pKKπ+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the ΞbΞc0π\Xi_b^-\to\Xi_c^0\pi^-, Ξc0pKKπ+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩbmΞbm_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
    corecore