187 research outputs found

    The Deep Plumbing System of Ischia: a Physico-chemical Window on the Fluid-saturated and CO2-sustained Neapolitan Volcanism (Southern Italy)

    Get PDF
    Ischia, a volcanic island located 18 miles SW of Naples (Southern Italy), is a densely populated active caldera that last erupted in AD 1302. Melt inclusions in phenocrysts of the Vateliero and Cava Nocelle shoshonite-latite eruptive products (6th to 4th centuries BC) constrain the structure and nature of the Ischia deep magmatic feeding system. Their geochemical characteristics make Ischia a natural borehole for probing the physico-chemical conditions of magma generation in mantle contaminated by slab-derived fluids or melts, largely dominated by CO2. Volatile concentrations in olivine-hosted melt inclusions require gas-melt equilibria at between 3 and 18 km depth. In agreement with what has already been demonstrated at the other neighboring Neapolitan volcanoes (Procida, Campi Flegrei caldera and Somma-Vesuvius volcanic complex), a major crystallization depth at 8-10 km has been identified.The analyzed melt inclusions provide clear evidence for CO2-dominated gas fluxing and consequent dehydration of magma batches stagnating at crustal discontinuities. Gas fluxing is further supported by selective enrichment in K owing to fluid-transfer during magma differentiation.This takes place under oxidized conditions (Fe3+/EFe>=0·3) that can be fixed by an equimolar proportion of divalent and trivalent iron in the melt if post-entrapment crystallization of the host olivine is discarded. The melt inclusion data, together with data from the literature for other Neapolitan volcanoes, show that magmatism and volcanism in the Neapolitan area, despite differences in composition and eruption dynamics, are closely linked to supercritical CO2-rich fluids.These fluids are produced by devolatilization of subducting terrigenous-pelagic metasediments and infiltrate the overlying mantle wedge, generate magmas and control their ascent up to eruption. Geochemical characteristics of Ischia and the other Neapolitan volcanoes reveal that the extent of fluid or melt contamination of the pre-subduction asthenospheric mantle wedge was similar among these volcanoes. However, differences in the isotopic compositions of the erupted magmas (more enriched in radiogenic Sr at Ischia, Campi Flegrei and Somma-Vesuvius with respect to Procida) and the amount of H2O in the plumbing system of these volcanoes (almost double at Ischia, Campi Flegrei and Somma-Vesuvius than at Procida) reflect the different flow-rates of deep slab-derived fluids or melts through the mantle wedge, which, in turn, control the amount of generated magma.The high bulk permeability of the lithosphere below Ischia, Campi Flegrei and Somma-Vesuvius, determined by the occurrence of intersecting NW-SE and NE-SW regional fault systems, favours fluid ascent and accumulation at crustal levels, with consequent larger magma production and storage than at Procida, located along the NE-SW system

    Dagli osservatóri agli Osservatòri

    Get PDF
    Quelli che hanno avuto il Vesuvio negli occhi, le loro storie di scienziati e di uomini, sono il tema di questo breve racconto. Storie di osservatóri, quindi, che hanno studiato il vulcano con passione, affascinati e sedotti da una montagna umbratile e solenne. Ma anche storie di Osservatòri, di contesti e tempi, ovvero, anch’essi mutevoli, in cui la scienza si organizza e si disorganizza per comprendere, prevedere, provvedere

    The active portion of the Campi Flegrei caldera structure imaged by 3-D inversion of gravity data

    Get PDF
    Publisher's Version/PDFWe present an improved density model and a new structural map of the Neapolitan Yellow Tuff caldera, the active portion of the nested Campi Flegrei caldera. The model was built using a new 3-D inversion of the available high-precision gravity data, and a new digital terrain and marine model. The inversion procedure, based on a variable-depth lumped assembling of the subsurface gravity distribution via cell aggregation, gives better defined insights into the internal caldera architecture, that well agree with the available geological, geophysical, and geochemical data. The adopted 3-D gravity method is highly efficient for characterizing the shallow caldera structure (down to 3 km depth) and defining features related to regional or volcano tectonic lineaments and dynamics. In particular, the resulting density distribution highlights a pronounced density low in correspondence of the central portion of the caldera with a detail not available till now. The joint interpretation of the available data suggests a subsurface structural setting that supports a piecemeal collapse of the caldera, and allows the identification of its headwall. Positive gravity anomalies localize dense intrusions (presently covered by late volcanic deposits) along the caldera marginal faults, and the main structural lineaments both bordering the resurgent block and cutting the caldera floor. These results allow us to both refine the current geological-structural framework and propose a new structural map that highlights the caldera boundary and its internal setting. This map is useful to interpret the phenomena occurring during unrest, and to improve both short-term and long-term volcanic hazards assessment

    The RESET project: constructing a European tephra lattice for refined synchronisation of environmental and archaeological events during the last c. 100 ka

    Get PDF
    This paper introduces the aims and scope of the RESET project (. RESponse of humans to abrupt Environmental Transitions), a programme of research funded by the Natural Environment Research Council (UK) between 2008 and 2013; it also provides the context and rationale for papers included in a special volume of Quaternary Science Reviews that report some of the project's findings. RESET examined the chronological and correlation methods employed to establish causal links between the timing of abrupt environmental transitions (AETs) on the one hand, and of human dispersal and development on the other, with a focus on the Middle and Upper Palaeolithic periods. The period of interest is the Last Glacial cycle and the early Holocene (c. 100-8 ka), during which time a number of pronounced AETs occurred. A long-running topic of debate is the degree to which human history in Europe and the Mediterranean region during the Palaeolithic was shaped by these AETs, but this has proved difficult to assess because of poor dating control. In an attempt to move the science forward, RESET examined the potential that tephra isochrons, and in particular non-visible ash layers (cryptotephras), might offer for synchronising palaeo-records with a greater degree of finesse. New tephrostratigraphical data generated by the project augment previously-established tephra frameworks for the region, and underpin a more evolved tephra 'lattice' that links palaeo-records between Greenland, the European mainland, sub-marine sequences in the Mediterranean and North Africa. The paper also outlines the significance of other contributions to this special volume: collectively, these illustrate how the lattice was constructed, how it links with cognate tephra research in Europe and elsewhere, and how the evidence of tephra isochrons is beginning to challenge long-held views about the impacts of environmental change on humans during the Palaeolithic. © 2015 Elsevier Ltd.RESET was funded through Consortium Grants awarded by the Natural Environment Research Council, UK, to a collaborating team drawn from four institutions: Royal Holloway University of London (grant reference NE/E015905/1), the Natural History Museum, London (NE/E015913/1), Oxford University (NE/E015670/1) and the University of Southampton, including the National Oceanography Centre (NE/01531X/1). The authors also wish to record their deep gratitude to four members of the scientific community who formed a consultative advisory panel during the lifetime of the RESET project: Professor Barbara Wohlfarth (Stockholm University), Professor Jørgen Peder Steffensen (Niels Bohr Institute, Copenhagen), Dr. Martin Street (Romisch-Germanisches Zentralmuseum, Neuwied) and Professor Clive Oppenheimer (Cambridge University). They provided excellent advice at key stages of the work, which we greatly valued. We also thank Jenny Kynaston (Geography Department, Royal Holloway) for construction of several of the figures in this paper, and Debbie Barrett (Elsevier) and Colin Murray Wallace (Editor-in-Chief, QSR) for their considerable assistance in the production of this special volume.Peer Reviewe

    Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy).

    No full text

    The "Pomici di Mercato" Plinian eruption of Somma Vesuvius: magma chamber processes and eruption dynamics.

    No full text

    Rare Earth element fractionation in magma Ca-rich garnets.

    No full text
    • …
    corecore