142 research outputs found

    JSPS-8 Evaluation of ultrasonic cleaner and water resonance system apparatus for decontamination of Campylobacter and Salmonella on broiler carcasses in Thailand

    Get PDF
    Campylobacter and Salmonella are the leading causes of foodborne bacterial gastroenteritis in humans. Most diarrhea cases in Europe are caused by Campylobacter followed by Salmonella (1). Likewise, the majority of gastroenteritis cases in Japan are caused by Campylobacter (2). Since chicken meat consumption has been found to be associated with Campylobacter and/or Salmonella infection in humans, it is important to decontaminate these bacteria from chicken carcasses. Ultrasonic cleaner and water resonance system apparatus was developed to reduce Campylobacter and Salmonella residing in feather follicles of chicken carcass by using shock wave to remove microorganisms from follicles. It has been shown in Japan that this apparatus could be useful for decontamination of Campylobacter from chicken skin when it was used with chemical substances, such as sodium hypochlorite, cetylpi-ridinium chloride, etc. (3). However, it is unclear whether or not this apparatus can effectively reduce Campylobacter and Salmonella on chicken carcasses when it is used with potable water and/or other substances, such as organic acid. Therefore, the objective of this study is to evaluate the ability of ultrasonic cleaner and water resonance system apparatus in decontamination of Campylobacter and Salmonella on broiler chicken carcasses in Thailand

    Prevalence of Tetracycline-Resistant Campylobacter in Organic Broilers During a Production Cycle

    Get PDF
    Tetracycline (tet) resistance in Campylobacter isolated from organically raised broilers was investigated in this study. Two hundred forty-five samples from an organic broiler farm were collected weekly from the first week to the end of the production cycle, and they were cultured for thermophilic Campylobacter. Tetracycline resistance of these Campylobacter isolates was identified by the agar dilution method, whereas DNA fingerprinting profiles of tet-susceptible and tet-resistant strains were determined by pulsed-field gel electrophoresis (PFGE). None of the Campylobacter isolates from the third and the fourth week of the production period were resistant to tetracycline, whereas 66.7% of the isolates from the fifth week were resistant to this antibiotic. Although the prevalence of tetracycline resistance reached 100.0% during the sixth and seventh week, less than 34.0% of the isolates from the 10th week were resistant to this antimicrobial agent. In addition, only 13.8% of Campylobacter isolates from the intestinal tracts of these organically raised broilers were resistant to tetracycline. The presence of the tet(O) gene was detected in 98.9% of tet-resistant Campylobacter isolates, and tet-susceptible and tet-resistant Campylobacter strains showed distinct PFGE genotypes. The results suggest that the Campylobacter strains isolated from the early stage of the production were susceptible to tetracycline, but they were subsequently displaced by tet-resistant Campylobacter

    Impaired Fitness and Transmission of Macrolide-Resistant Campylobacter jejuni in Its Natural Host

    Get PDF
    Campylobacter jejuni is a major zoonotic pathogen transmitted to humans via the food chain and is prevalent in chickens, a natural reservoir for this pathogenic organism. Due to the importance of macrolide antibiotics in clinical therapy of human campylobacteriosis, development of macrolide resistance in Campylobacter has become a concern for public health. To facilitate the control of macrolide-resistant Campylobacter, it is necessary to understand if macrolide resistance affects the fitness and transmission of Campylobacter in its natural host. In this study we conducted pairwise competitions and comingling experiments in chickens using clonally related and isogenic C. jejuni strains, which are either susceptible or resistant to erythromycin (Ery). In every competition pair, Ery-resistant (Eryr) Campylobacter was consistently outcompeted by the Ery-susceptible (Erys) strain. In the comingling experiments, Eryr Campylobacter failed to transmit to chickens precolonized by Erys Campylobacter, while isogenic Erys Campylobacter was able to transmit to and establish dominance in chickens precolonized by Eryr Campylobacter. The fitness disadvantage was linked to the resistance-conferring mutations in the 23S rRNA. These findings clearly indicate that acquisition of macrolide resistance impairs the fitness and transmission of Campylobacter in chickens, suggesting that the prevalence of macrolide-resistant C. jejuni will likely decrease in the absence of antibiotic selection pressure

    Impact of mutations in DNA gyrase genes on quinolone resistance in Campylobacter jejuni

    Get PDF
    Amino acid substitutions providing quinolone resistance to Campyloabcter jejuni have been found in the quinolone resistance-determining region of protein DNA gyrase subunit A (GyrA), with the highest frequency at position 86 followed by position 90. In this study, wild-type and mutant recombinant DNA gyrase subunits were expressed in Escherichia coli and purified using Ni-NTA agarose column chromatography. Soluble 97 kDa GyrA and 87 kDa DNA gyrase subunit B were shown to reconstitute ATP-dependent DNA supercoiling activity. A quinolone-inhibited supercoiling assay demonstrated the roles of Thr86Ile, Thr86Ala, Thr86Lys, Asp90Asn, and Asp90Tyr amino acid substitutions in reducing sensitivity to quinolones. The marked effect of Thr86Ile on all examined quinolones suggested the advantage of this substitution in concordance with recurring isolation of quinolone-resistant C. jejuni. An analysis of the structure-activity relationship showed the importance of the substituent at position 8 in quinolones to overcome the effect of Thr86Ile. Sitafloxacin (SIT), which has a fluorinate cyclopropyl ring at R-1 and a chloride substituent at R-8, a characteristic not found in other quinolones, showed the highest inhibitory activity against all mutant C. jejuni gyrases including ciprofloxacin-resistant mutants. The results suggest SIT as a promising drug for the treatment of campylobacteriosis caused by CIP-resistant C. jejuni. Copyright (C) 2016 John Wiley & Sons, Ltd

    Reducing Risk of Campylobacteriosis from Poultry: A Mini Review

    Get PDF
    The worldwide annual cost of campylobacteriosis is at least several billion dollars. Risk analysis is being used to reduce the magnitude of the problem and to support regulations and voluntary actions that are successful in that the number of cases of illness is decreasing. The new regulations in the U.S. have resulted in commercial products with fewer Campylobacter. During the last 16 years there has been significant progress in New Zealand because of new regulations that have resulted in reduced numbers of Campylobacter on marketed products. While some progress has been made in reducing cross contamination, it remains an important issue. Food safety education on the general principles of food hygiene and food handling as well as applications of hazard analysis and critical control point (HACCP) principles in food safety management are recommended to address the challenges associated with cross contamination. Economic analysis of campylobacteriosis and the poultry meat industry shows that there are significant benefits of addressing the challenges associated with Campylobacter in poultry products. Freezing has been shown to be an excellent cost-effective method to reduce the number of viable Campylobacter and the number of cases of campylobacteriosis

    Genotyping and antibiotic resistance of thermophilic Campylobacter isolated from chicken and pig meat in Vietnam

    Get PDF
    Background Campylobacter species are recognized as the most common cause of foodborne bacterial gastroenteritis in humans. In this study nine Campylobacter strains isolated from chicken meat and pork in Hanoi, Vietnam, were characterized using molecular methods and tested for antibiotic resistance. Results The nine isolates (eight C. jejuni and one C. coli) were identified by multiplex PCR, and tested for the presence or absence of 29 gene loci associated with virulence, lipooligosaccharide (LOS) biosynthesis and further functions. flaA typing, multilocus sequence typing and microarray assay investigation showed a high degree of genetic diversity among these isolates. In all isolates motility genes (flaA, flaB, flhA, fliM), colonization associated genes (cadF, docB), toxin production genes (cdtA, cdtB, secD, secF), and the LOS biosynthesis gene pglB were detected. Eight gene loci (fliY, virB11, Cje1278, Cj1434c, Cj1138, Cj1438c, Cj1440c, Cj1136) could not be detected by PCR. A differing presence of the gene loci ciaB (22.2 %), Cje1280 (77.8 %), docC (66.7 %), and cgtB (55.6 %) was found. iamA, cdtC, and the type 6 secretion system were present in all C. jejuni isolates but not in C. coli. flaA typing resulted in five different genotypes within C. jejuni, MLST classified the isolates into seven sequence types (ST-5155, ST-6736, ST-2837, ST-4395, ST-5799, ST-4099 and ST-860). The microarray assay analysis showed a high genetic diversity within Vietnamese Campylobacter isolates which resulted in eight different types for C. jejuni. Antibiotic susceptibility profiles showed that all isolates were sensitive to gentamicin and most isolates (88.8 %) were sensitive to chloramphenicol, erythromycin and streptomycin. Resistance rates to nalidixic acid, tetracycline and ciprofloxacin were 88.9, 77.8 and 66.7 %, respectively. Conclusions To the best of our knowledge, this study is the first report that shows high genetic diversity and remarkable antibiotic resistance of Campylobacter strains isolated from meat in Vietnam which can be considered of high public health significance. These preliminary data show that large scale screenings are justified to assess the relevance of Campylobacter infections on human health in Vietnam

    Antimicrobial resistance of Campylobacter isolates from small scale and backyard chicken in Kenya

    Get PDF
    Background Thermophilic Campylobacter species are a major cause of bacterial foodborne diarrhoea in humans worldwide. Poultry and their products are the predominant source for human campylobacteriosis. Resistance of Campylobacter to antibiotics is increasing worldwide, but little is known about the antibiotic resistance in Campylobacter isolated from chicken in Kenya. In this study, 35 suspected Campylobacter strains isolated from faeces and cloacal swabs of chicken were tested for their susceptibility to seven antibiotics using a broth microdilution assay and molecular biological investigations. Results Overall, DNA of thermophilic Campylobacter was identified in 53 samples by PCR (34 C. jejuni, 18 C. coli and one mix of both species) but only 35 Campylobacter isolates (31 C. jejuni and 4 C. coli) could be re-cultivated after transportation to Germany. Isolates were tested for their susceptibility to antibiotics using a broth microdilution assay. Additionally, molecular biological detection of antibiotic resistance genes was carried out. C. jejuni isolates showed a high rate of resistance to nalidixic acid, tetracycline and ciprofloxacin of 77.4, 71.0 and 71.0 %, respectively. Low resistance (25.8 %) was detected for gentamicin and chloramphenicol. Multidrug resistance in C. jejuni could be detected in 19 (61.3 %) isolates. Resistance pattern of C. coli isolates was comparable. Resistance to ciprofloxacin was confirmed by MAMA–PCR and PCR–RFLP in all phenotypically resistant isolates. The tet(O) gene was detected only in 54.5 % of tetracycline resistant C. jejuni isolates. The tet(A) gene, which is also responsible for tetracycline resistance, was found in 90.3 % of C. jejuni and in all C. coli isolates. Thirteen phenotypically erythromycin-resistant isolates could not be characterised by using PCR–RFLP and MAMA–PCR. Conclusions To the best of our knowledge, this study is the first report about resistance to antibiotics in thermophilic Campylobacter originating from chicken in Kenya. Campylobacter spp. show a high level of resistance to ciprofloxacin, nalidixic acid and tetracycline but also a remarkable one to chloramphenicol and gentamicin and they are multidrug resistant. Resistance to antibiotics is a global public health concern. In Kenya, resistance surveillance needs further attention in the future. Efforts to establish at least a National Laboratory with facilities for performing phenotypic and genotypic characterization of thermophilic Campylobacter is highly recommended

    TYPLEX® Chelate, a novel feed additive, inhibits Campylobacter jejuni biofilm formation and cecal colonization in broiler chickens

    Get PDF
    Reducing Campylobacter spp. carriage in poultry is challenging, but essential to control this major cause of human bacterial gastroenteritis worldwide. Although much is known about the mechanisms and route of Campylobacter spp. colonization in poultry the literature is scarce on antibiotic-free solutions to combat Campylobacter spp. colonization in poultry. In vitro and in vivo studies were conducted to investigate the role of TYPLEX® Chelate, a novel feed additive, in inhibiting Campylobacter jejuni (C. jejuni) biofilm formation and reducing C. jejuni and Escherichia coli (E. coli) colonization in broiler chickens at market age. In an in vitro study, the inhibitory effect on C. jejuni biofilm formation using a plastic bead assay was investigated. The results demonstrated that TYPLEX® Chelate significantly reduces biofilm formation. For in vivo study, 800 broilers (one-day old) were randomly allocated to 4 dietary treatments in a randomised block design, each having 10 replicate pens with 20 birds per pen. At day 21, all birds were challenged with C. jejuni via seeded litter. At day 42, caecal samples were collected and tested for volatile fatty acid (VFA) concentrations, C. jejuni and E. coli counts. The results showed that TYPLEX® Chelate reduced the carriage of C. jejuni and E. coli in poultry by 2 and 1 log₁₀ per gram caecal sample, respectively, and increased caecal VFA concentrations. These findings support TYPLEX® Chelate as a novel non-antibiotic feed additive that may help produce poultry with a lower public health risk of Campylobacteriosis

    Local genes for local bacteria: evidence of allopatry in the genomes of transatlantic Campylobacter populations

    Get PDF
    The genetic structure of bacterial populations can be related to geographical locations of isolation. In some species, there is a strong correlation between geographical distance and genetic distance, which can be caused by different evolutionary mechanisms. Patterns of ancient admixture in Helicobacter pylori can be reconstructed in concordance with past human migration, whereas in Mycobacterium tuberculosis it is the lack of recombination that causes allopatric clusters. In Campylobacter, analyses of genomic data and molecular typing have been successful in determining the reservoir host species, but not geographical origin. We investigated biogeographical variation in highly recombining genes to determine the extent of clustering between genomes from geographically distinct Campylobacter populations. Whole genome sequences from 294 Campylobacter isolates from North America and the UK were analysed. Isolates from within the same country shared more recently recombined DNA than isolates from different countries. Using 15 UK/American closely matched pairs of isolates that shared ancestors, we identify regions that have frequently and recently recombined to test their correlation with geographical origin. The seven genes that demonstrated the greatest clustering by geography were used in an attribution model to infer geographical origin which was tested using a further 383 UK clinical isolates to detect signatures of recent foreign travel. Patient records indicated that in 46 cases travel abroad had occurred less than two weeks prior to sampling and genomic analysis identified that 34 (74%) of these isolates were of a non-UK origin. Identification of biogeographical markers in Campylobacter genomes will contribute to improved source attribution of clinical Campylobacter infection and inform intervention strategies to reduce campylobacteriosis

    Identification of a Key Amino Acid of LuxS Involved in AI-2 Production in Campylobacter jejuni

    Get PDF
    Autoinducer-2 (AI-2) mediated quorum sensing has been associated with the expression of virulence factors in a number of pathogenic organisms and has been demonstrated to play a role in motility and cytolethal distending toxin (cdt) production in Campylobacter jejuni. We have initiated the work to determine the molecular basis of AI-2 synthesis and the biological functions of quorum sensing in C. jejuni. In this work, two naturally occurring variants of C. jejuni 81116 were identified, one producing high-levels of AI-2 while the other is defective in AI-2 synthesis. Sequence analysis revealed a G92D mutation in the luxS gene of the defective variant. Complementation of the AI-2− variant with a plasmid encoded copy of the wild-type luxS gene or reversion of the G92D mutation by site-directed mutagenesis fully restored AI-2 production by the variant. These results indicate that the G92D mutation alone is responsible for the loss of AI-2 activity in C. jejuni. Kinetic analyses showed that the G92D LuxS has a ∼100-fold reduced catalytic activity relative to the wild-type enzyme. Findings from this study identify a previously undescribed amino acid that is essential for AI-2 production by LuxS and provide a unique isogenic pair of naturally occurring variants for us to dissect the functions of AI-2 mediated quorum sensing in Campylobacter
    corecore