330 research outputs found

    Specific eradication of HIV-1 from infected cultured cells

    Get PDF
    A correlation between increase in the integration of Human Immunodeficiency virus-1 (HIV-1) cDNA and cell death was previously established. Here we show that combination of peptides that stimulate integration together with the protease inhibitor Ro 31-8959 caused apoptotic cell death of HIV infected cells with total extermination of the virus. This combination did not have any effect on non-infected cells. Thus it appears that cell death is promoted only in the infected cells. It is our view that the results described in this work suggest a novel approach to specifically promote death of HIV-1 infected cells and thus may eventually be developed into a new and general anti-viral therapy

    Inhibition of HIV-1 integrase nuclear import and replication by a peptide bearing integrase putative nuclear localization signal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The integrase (IN) of human immunodeficiency virus type 1 (HIV-1) has been implicated in different steps during viral replication, including nuclear import of the viral pre-integration complex. The exact mechanisms underlying the nuclear import of IN and especially the question of whether it bears a functional nuclear localization signal (NLS) remain controversial.</p> <p>Results</p> <p>Here, we studied the nuclear import pathway of IN by using multiple <it>in vivo </it>and <it>in vitro </it>systems. Nuclear import was not observed in an importin α temperature-sensitive yeast mutant, indicating an importin α-mediated process. Direct interaction between the full-length IN and importin α was demonstrated <it>in vivo </it>using bimolecular fluorescence complementation assay (BiFC). Nuclear import studies in yeast cells, with permeabilized mammalian cells, or microinjected cultured mammalian cells strongly suggest that the IN bears a NLS domain located between residues 161 and 173. A peptide bearing this sequence -NLS-IN peptide- inhibited nuclear accumulation of IN in transfected cell-cycle arrested cells. Integration of viral cDNA as well as HIV-1 replication in viral cell-cycle arrested infected cells were blocked by the NLS-IN peptide.</p> <p>Conclusion</p> <p>Our present findings support the view that nuclear import of IN occurs via the importin α pathway and is promoted by a specific NLS domain. This import could be blocked by NLS-IN peptide, resulting in inhibition of viral infection, confirming the view that nuclear import of the viral pre-integration complex is mediated by viral IN.</p

    J/Psi and Psi' total cross sections and formation times from data for charmonium suppression in pApA collisions

    Full text link
    The recent data for E866 experiment on the x_F dependence for charmonium suppression in pA collisions at 800 GeV are analyzed using a time- and energy-dependent preformed charmonium absorption cross section \sigma_{abs}^\psi(\tau,\sqrt{s}). For \sqrt{s}=10 GeV the initially (\tau=0) produced premeson has an absorption cross section of \sigma_{pr}~3mb. At the same energy but for \tau -> \infty one deduces for the total cross sections \sigma_{tot}^{J/Psi N}=(2.8\pm 0.3)mb, \sigma_{tot}^{J/Psi N}= (10.5\pm 3.6)mb. The date are compatible with a formation time \tau_{1/2}=0.6 fm/c.Comment: 13 pages of Latex including 2 figures; typos in the abstract are correcte

    Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis

    Get PDF
    Transferrin, an iron-transporting serum glycoprotein, is efficiently taken up into cells by the process of receptor-mediated endocytosis. Transferrin receptors are found on the surface of most proliferating cells, in elevated numbers on erythroblasts and on many kinds of tumors. The efficient cellular mechanism for uptake of transferrin has been subverted for the delivery of low-molecular-weight drugs, protein toxins, and liposomes by linkage of these agents to transferrin or to anti-transferrin receptor antibodies. Linkage may be via chemical conjugation procedures or by the generation of chimeric fusion proteins. Transferrin conjugated to DNA-binding compounds (e.g. polycations or intercalating agents) has been successfully used for the import of DNA molecules into cells. High-level gene expression is obtained only if endosome-disruptive agents such as influenza hemagglutinin peptides or adenovirus particles are included which release the DNA complex from intracellular vesicles into the cytoplasm

    Amylase mRNA synthesis and ageing in rat parotid glands following isoproterenol-stimulated secretion

    Full text link
    In the parotid, as well as in other exocrine glands, secretory protein synthesis declines with age. However, whether this decline in the steady-state rate of protein synthesis reflects the reduced digestive activity of the animal or actual cellular alterations that affect synthesis is unknown. Here the ability to synthesize amylase and its mRNA during the period of enhanced protein synthesis following secretion induced by isoproterenol was compared in acinar cells of 2-and 24-month-old rats. In unstimulated glands, rates of synthesis of total protein and amylase, as well as amounts of amylase mRNA, were significantly less in the older rats than in their younger counterparts. After stimulation with isoproterenol, which induced the secretion of about 50% of stored proteins, rates of synthesis of total protein, as well as amylase, were increased by about 2.5 x the unstimulated rates in both age groups. However, the amount of amylase mRNA did not increase in parallel with the increase in the rate of amylase protein synthesis in both young and old rats. The molecular size of the mRNA was the same in stimulated and unstimulated glands of both age groups. Thus, it appears that parotid acinar cells from old rats can be stimulated to synthesize secretory proteins at an increased rate. It remains to be determined what causes the reduced rate of protein synthesis in unstimulated glands in old rats.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30081/1/0000452.pd

    The Membrane Fusion Step of Vaccinia Virus Entry Is Cooperatively Mediated by Multiple Viral Proteins and Host Cell Components

    Get PDF
    For many viruses, one or two proteins allow cell attachment and entry, which occurs through the plasma membrane or following endocytosis at low pH. In contrast, vaccinia virus (VACV) enters cells by both neutral and low pH routes; four proteins mediate cell attachment and twelve that are associated in a membrane complex and conserved in all poxviruses are dedicated to entry. The aim of the present study was to determine the roles of cellular and viral proteins in initial stages of entry, specifically fusion of the membranes of the mature virion and cell. For analysis of the role of cellular components, we used well characterized inhibitors and measured binding of a recombinant VACV virion containing Gaussia luciferase fused to a core protein; viral and cellular membrane lipid mixing with a self-quenching fluorescent probe in the virion membrane; and core entry with a recombinant VACV expressing firefly luciferase and electron microscopy. We determined that inhibitors of tyrosine protein kinases, dynamin GTPase and actin dynamics had little effect on binding of virions to cells but impaired membrane fusion, whereas partial cholesterol depletion and inhibitors of endosomal acidification and membrane blebbing had a severe effect at the later stage of core entry. To determine the role of viral proteins, virions lacking individual membrane components were purified from cells infected with members of a panel of ten conditional-lethal inducible mutants. Each of the entry protein-deficient virions had severely reduced infectivity and except for A28, L1 and L5 greatly impaired membrane fusion. In addition, a potent neutralizing L1 monoclonal antibody blocked entry at a post-membrane lipid-mixing step. Taken together, these results suggested a 2-step entry model and implicated an unprecedented number of viral proteins and cellular components involved in signaling and actin rearrangement for initiation of virus-cell membrane fusion during poxvirus entry
    • …
    corecore