83 research outputs found

    Development of a Near-Field Magnetic Projectile Location System

    Get PDF
    Near-field magnetic principles and properties have been well studied and are used in a plethora of modern applications, ranging from medical applications to audio and video processing, and magnetic tracking. Current tracking applications are based in either AC or Pulsed-DC systems. Generally, AC systems have high resolution and accuracy, but perform very poorly in the presence of conducting magnetic materials. Pulsed-DC tracking has the benefit of not inducing large eddy currents in proximity to magnetic materials, thus increasing its overall accuracy. It has been suggested that pure DC systems are not feasible because they are unable to account for the presence of the Earth\u27s magnetic field.;It was the purpose of this research to propose and create a system, and develop an algorithm, that has the ability to determine the three-dimensional position and orientation of a permanent magnetic source; the position and orientation to be determined by information reported by a network of single-axis magnetic sensors. Methodology to account for the Earth\u27s magnetic field before, during, and after operation in order to remove ambient and environmental magnetic noise, much like a pulsed-DC system does, was also to be considered.;A center-finding algorithm was developed to determine position (x- and y-axis) based on the unique geometry of the B-field of the magnetic source at any point in three-dimensional space. Two degrees of orientation, elevation and rotation, were calculated from the position and the reported values of the magnetic sensors. The z-axis position was then determined given the analytical model and the other calculated values. In addition to the computed position, a six input Kalman tracker-estimator was developed and implemented using three dimensions of position and velocities to aid in predicting the path the magnetic source will take, based solely on kinematics, to reduce position-based sensor error.;The contribution of this research shows that is it not necessary to obtain three-axis magnetic data to track a magnetic source in three-dimensional space. When the distribution of the magnetic flux density is known, it is possible to determine three-dimensional position and orientation with only single-axis information.;Experimental testing verified the theoretical predictions of this statement. A rotational test apparatus was used to verify two-dimensional position and orientation, while a linear test apparatus verified position in three dimensions. The same magnetic source was used, while changing the orientation for each test. Initial findings allow the magnetic source to be tracked on the rotational testing apparatus to within a radial error of 3.9% (mean) and less than 6.4% (worst case) for predictions. The linear apparatus is able to track the z-axis component of the source which can be determined within 0.19% (mean) and 0.24% (worst case), and mean three-dimensional position of the magnetic source within 1.4% error. These results suggest that the novel method presented in this document is credible method for magnetic detection and tracking

    PMD tolerance of 288 Gbit/s Coherent WDM and transmission over unrepeatered 124 km of field-installed single mode optical fiber

    Get PDF
    Low-cost, high-capacity optical transmission systems are required for metropolitan area networks. Direct-detected multi-carrier systems are attractive candidates, but polarization mode dispersion (PMD) is one of the major impairments that limits their performance. In this paper, we report the first experimental analysis of the PMD tolerance of a 288Gbit/s NRZ-OOK Coherent Wavelength Division Multiplexing system. The results show that this impairment is determined primarily by the subcarrier baud rate. We confirm the robustness of the system to PMD by demonstrating error-free performance over an unrepeatered 124km field-installed single-mode fiber with a negligible penalty of 0.3dB compared to the back-to-back measurements. (C) 2010 Optical Society of Americ

    Diastolic Ventricular Interaction in Heart Failure With Preserved Ejection Fraction

    Get PDF
    Background Exercise‐induced pulmonary hypertension is common in heart failure with preserved ejection fraction (HFpEF). We hypothesized that this could result in pericardial constraint and diastolic ventricular interaction in some patients during exercise. Methods and Results Contrast stress echocardiography was performed in 30 HFpEF patients, 17 hypertensive controls, and 17 normotensive controls (healthy). Cardiac volumes, and normalized radius of curvature (NRC) of the interventricular septum at end‐diastole and end‐systole, were measured at rest and peak‐exercise, and compared between the groups. The septum was circular at rest in all 3 groups at end‐diastole. At peak‐exercise, end‐systolic NRC increased to 1.47Β±0.05 (P<0.001) in HFpEF patients, confirming development of pulmonary hypertension. End‐diastolic NRC also increased to 1.54Β±0.07 (P<0.001) in HFpEF patients, indicating septal flattening, and this correlated significantly with end‐systolic NRC (ρ=0.51, P=0.007). In hypertensive controls and healthy controls, peak‐exercise end‐systolic NRC increased, but this was significantly less than observed in HFpEF patients (HFpEF, P=0.02 versus hypertensive controls; P<0.001 versus healthy). There were also small, non‐significant increases in end‐diastolic NRC in both groups (hypertensive controls, +0.17Β±0.05, P=0.38; healthy, +0.06Β±0.03, P=0.93). In HFpEF patients, peak‐exercise end‐diastolic NRC also negatively correlated (r=βˆ’0.40, P<0.05) with the change in left ventricular end‐diastolic volume with exercise (ie, the Frank‐Starling mechanism), and a trend was noted towards a negative correlation with change in stroke volume (r=βˆ’0.36, P=0.08). Conclusions Exercise pulmonary hypertension causes substantial diastolic ventricular interaction on exercise in some patients with HFpEF, and this restriction to left ventricular filling by the right ventricle exacerbates the pre‐existing impaired Frank‐Starling response in these patients

    Altruism in a volatile world

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this record.The evolution of altruism – costly self-sacrifice in the service of others – has puzzled biologists since The Origin of Species. For half a century, attempts to understand altruism have been built on the insight that altruists may help relatives to have extra offspring in order to spread shared genes . This theory – known as inclusive fitness – is founded on a simple inequality termed β€˜Hamilton’s rule’. However, explanations of altruism have typically ignored the stochasticity of natural environments, which will not necessarily favour genotypes that produce the greatest average reproductive success. Moreover, empirical data across many taxa reveal associations between altruism and environmental stochasticity, a pattern not predicted by standard interpretations of Hamilton’s rule. Here, we derive Hamilton’s rule with explicit stochasticity, leading to novel predictions about the evolution of altruism. We show that of offspring produced by relatives. Consequently, costly altruism can evolve even if it has a net negative effect on the average reproductive success of related recipients. The selective pressure on volatility suppressing altruism is proportional to the coefficient of variation in population fitness, and is therefore diminished by its own success. Our results formalise the hitherto elusive link between bet-hedging and altruism, and reveal missing fitness effects in the evolution of animal societies.PK was supported by the National Geographic Society (GEF-NE 145-15) and a University of Bristol Research Studentship; ADH was supported by the Natural Environment Research Council (NE/L011921/1); ANR was supported by a European Research Council Consolidator Grant (award no. 682253); and SS was supported by the Natural Environment Research Council (NE/M012913/2)

    The Role of Actin Turnover in Retrograde Actin Network Flow in Neuronal Growth Cones

    Get PDF
    The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network

    Patterns of microRNA Expression in Non-Human Primate Cells Correlate with Neoplastic Development In Vitro

    Get PDF
    MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression post-transcriptionally. They play a critical role in developmental and physiological processes and have been implicated in the pathogenesis of several diseases including cancer. To identify miRNA signatures associated with different stages of neoplastic development, we examined the expression profile of 776 primate miRNAs in VERO cells (a neoplastically transformed cell line being used for the manufacture of viral vaccines), progenitor primary African green monkey kidney (pAGMK) cells, and VERO cell derivatives: spontaneously immortalized, non-tumorigenic, low-passage VERO cells (10-87 LP); tumorigenic, high-passage VERO cells (10-87 HP); and a cell line (10-87 T) derived from a 10-87 HP cell tumor xenograft in athymic nude mice. When compared with pAGMK cells, the majority of miRNAs were expressed at lower levels in 10-87 LP, 10-87 HP, and 10-87 T cells. We identified 10 up-regulated miRNAs whose level of expression correlated with VERO cell evolution from a non-tumorigenic phenotype to a tumorigenic phenotype. The overexpression of miR-376a and the polycistronic cluster of miR-376a, miR-376b and miR-376c conferred phenotypic changes to the non-tumorigenic 10-87 LP cells that mimic the tumorigenic 10-87 HP cells. Thirty percent of miRNAs that were components of the identified miRNAs in our spontaneously transformed AGMK cell model are also dysregulated in a variety of human tumors. These results may prove to be relevant to the biology of neoplastic development. In addition, one or more of these miRNAs could be biomarkers for the expression of a tumorigenic phenotype
    • …
    corecore