
Graduate Theses, Dissertations, and Problem Reports 

2012 

Development of a Near-Field Magnetic Projectile Location System Development of a Near-Field Magnetic Projectile Location System 

Andrew D. Lowery 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Lowery, Andrew D., "Development of a Near-Field Magnetic Projectile Location System" (2012). Graduate 
Theses, Dissertations, and Problem Reports. 4891. 
https://researchrepository.wvu.edu/etd/4891 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4891?utm_source=researchrepository.wvu.edu%2Fetd%2F4891&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 

 

Development of a Near-Field Magnetic  

Projectile Location System  

 
by 

 

Andrew D. Lowery 
 

 

 

Dissertation submitted to the 

College of Engineering and Mineral Resources 

At West Virginia University 

in partial fulfillment of the requirements 

for the degree of 

 

 

 

Doctor of Philosophy 

in 

Mechanical Engineering 
 

 

 

Submitted to 

 

MaryAnn Clarke, Ph.D. 

Powsiri Klinkhachorn, Ph.D. 

Roy Nutter, Ph.D. 

Franz Pertl, Ph.D. 

James Smith, Ph.D., Committee Chairman 

 

 

 

 

Department of Mechanical and Aerospace Engineering 

College of Engineering and Mineral Resources 

West Virginia University 

Morgantown, West Virginia 

2012 

 

 

 

Keywords: Near-field, permanent magnet, magnetic location system 

Copyright © 2012  



 

 

Abstract 

 

Development of a Near-Field Magnetic Projectile Location System  

 

by Andrew D. Lowery 

 

Near-field magnetic principles and properties have been well studied and are used in a plethora 

of modern applications, ranging from medical applications to audio and video processing, and 

magnetic tracking. Current tracking applications are based in either AC or Pulsed-DC systems. 

Generally, AC systems have high resolution and accuracy, but perform very poorly in the 

presence of conducting magnetic materials. Pulsed-DC tracking has the benefit of not inducing 

large eddy currents in proximity to magnetic materials, thus increasing its overall accuracy. It has 

been suggested that pure DC systems are not feasible because they are unable to account for the 

presence of the Earth’s magnetic field. 

 

It was the purpose of this research to propose and create a system, and develop an algorithm, that 

has the ability to determine the three-dimensional position and orientation of a permanent 

magnetic source; the position and orientation to be determined by information reported by a 

network of single-axis magnetic sensors. Methodology to account for the Earth’s magnetic field 

before, during, and after operation in order to remove ambient and environmental magnetic 

noise, much like a pulsed-DC system does, was also to be considered 

 

A center-finding algorithm was developed to determine position (x- and y-axis) based on the 

unique geometry of the B-field of the magnetic source at any point in three-dimensional space. 

Two degrees of orientation, elevation and rotation, were calculated from the position and the 

reported values of the magnetic sensors. The z-axis position was then determined given the 

analytical model and the other calculated values. In addition to the computed position, a six input 

Kalman tracker-estimator was developed and implemented using three dimensions of position 

and velocities to aid in predicting the path the magnetic source will take, based solely on 

kinematics, to reduce position-based sensor error. 

 



 

 

The contribution of this research shows that is it not necessary to obtain three-axis magnetic data 

to track a magnetic source in three-dimensional space. When the distribution of the magnetic 

flux density is known, it is possible to determine three-dimensional position and orientation with 

only single-axis information. 

 

Experimental testing verified the theoretical predictions of this statement. A rotational test 

apparatus was used to verify two-dimensional position and orientation, while a linear test 

apparatus verified position in three dimensions. The same magnetic source was used, while 

changing the orientation for each test. Initial findings allow the magnetic source to be tracked on 

the rotational testing apparatus to within a radial error of 3.9% (mean) and less than 6.4% (worst 

case) for predictions. The linear apparatus is able to track the z-axis component of the source 

which can be determined within 0.19% (mean) and 0.24% (worst case), and mean three-

dimensional position of the magnetic source within 1.4% error. These results suggest that the 

novel method presented in this document is credible method for magnetic detection and tracking. 
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Chapter 1 – Introduction 

 
Magnetic fields and their principles have been well studied and are well defined. Because of this, 

there are wide spread possibilities for practical applications. Previously researched technical 

embodiments using magnetic fields include: medical applications [3], theories of biological 

effects [4], wireless identification [5], thermal processes [6], and audio [7] and video processing 

[8]. Additionally, magnetic fields can be used for tracking applications. 

 

Current magnetic tracking applications exist for a variety of applications. These active systems 

are made using both AC and pulsed DC magnetic fields. Generally, AC systems have high 

resolution and accuracy, but perform very poorly in the presence of conducting magnetic 

materials such as carbon steel and iron alloys [1].  It is often for this reason that DC systems are 

employed [9]. It has been suggested that pure DC systems are not always feasible because there 

is no easy or reliable way to account for the presence of the Earth’s magnetic field [2]. The 

traditional solution to this problem is through the use of pulsed DC magnetic sources. Pulsed DC 

tracking has the benefit of reducing eddy currents in relatively close proximity to magnetic 

materials, thus increasing its overall accuracy [2].  

 

It is the purpose of this research to propose, model, and create a magnetic tracking system that 

has the ability to account for the Earth’s magnetic field before, during, and after operation in 

order to determine the three-dimensional location and orientation of a target object. Position and 

orientation will be determined by using a network of single-axis magnetic sensors and a priori 

knowledge of the geometry of the magnetic flux density (B-field) of the source projectile. 

Knowledge of this geometry was used to create models to determine the rotation and elevation of 

the magnetic source from the sensor network, as well as the z-axis position. Developing an 

algorithm that takes advantage of the B-field geometry reduces the amount of computation time 

necessary for location and tracking applications compared to iterative solutions methods. 

Additionally, this novel method of using magnetic sources and sensors will describe possible 

uses in magnetically noisy conditions. 
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1.1 Research Objective 
 

The objective of this research is to create a system, and develop a novel algorithm, that can 

successfully locate the three-dimensional position and orientation of a permanent magnet 

projectile using a network of single-axis magnetic sensors.  

 

This research will discuss the theory behind the proposal, including characteristics of magnetic 

sensors and magnetic fields with respect to desirable magnetic characteristics (material, shape, 

and strength), an overview of previous magnetic tracking systems and practical applications, as 

well as the effect of magnetic noise on the ability to track a magnetic projectile. 

 

From basic principles, equations of an analytical model will be developed for a magnetic source 

with 5-degrees of freedom, and which will then be compared for accuracy against 

electromagnetic simulations. Once verified with simulations, an experimental apparatus will be 

designed and constructed as a proof-of-concept apparatus. Additionally, hardware, including a 

network of single axis sensors, a data acquisition system, and software solutions for calculating 

and estimating the position will be developed and tested. Results will show the feasibility of a 

simplistic one-dimensional sensor network for calculating and tracking the position and 

orientation of a magnetic projectile in three-dimensional space. 

 

1.2 Motivation for Research 
 

Because of the variety of magnetic sources and magnetic sensing devices, the magnetic tracking 

system being proposed has a host of possible embodiments. Possible uses for this novel system 

are described in the sections below. 

 

1.2.1 Sporting Event Tracking and Goal Detection 

 

Sporting events have occupied an important part of our leisure time for decades, and inaccurate 

calls, even when done inadvertently or accidentally can, and often do, change the outcome of the 
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game. Often, improper or inaccurate calls by a scoring official also result in a delay in the game 

and loss of momentum for both the teams and the spectators. In some sports, such as ice hockey, 

the actions associated with the scoring process can create significant problems. This is 

particularly true when the field of view is obscured by players or their equipment. Additionally, 

the speed of the puck and the actions and interactions of the skaters surrounding it can easily 

hide the progress on, or near, the goal line.  

 

To facilitate the calls of the officials, video equipment and the availability of video play-back can 

aid in the decision making process. [10], [11] In some applications [12], [13], high speed video 

cameras blanket the rink, covering the visible ice from as many angles as possible. 

Unfortunately, even all of this visual monitoring equipment can be blocked, making this situation 

even more difficult to call. Clearly what is needed is a detection protocol where the players and 

their equipment are transparent to the system.   

 

Attempts have been made in the past to track the puck on the ice. [14] This was mainly for 

television viewers to be able to locate the puck while in action. Previous methods attempting to 

perform goal detection were based solely on visible recognition, and therefore were not accurate 

enough for goal tracking because the puck is often occluded by the goal keeper or other players. 

The novel method of using magnetic sources and sensors described in this document will 

propose a tracking system that is not dependant on visual interpretation. 

 

1.2.2 Tracking and Security for Retail and Merchandise 

 

In another possible embodiment, a small scale magnetic system could be used to track 

merchandise in-store or in-warehouse for security or inventory purposes. Much like magnetic 

security devices that are used to protect expensive electronics in stores today, a small magnetic 

source could be embedded in product packaging and be used to detect concealed merchandise 

leaving the premises, as well as its movements from warehouse, to store, to consumer.  

 

Although there will not be enough information to uniquely identified specific products, this 

system could be used to quickly identify packages marked as expensive, perishable, dangerous, 
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or otherwise differentiable. A system such as this would no longer make removing specialized 

security devices necessary, which assumes that the product re-entering the store for return does 

not interfere with the inventory management system. 

 

A simple implementation, similar to the sport event embodiment, includes a small, 

inconspicuous magnetic sensor network that could be deployed around doorways, thresholds, or 

in specific areas of warehouses or storage areas with the ability to detect when merchandise 

enters and exits. This sensor network could be connected to a data acquisition system capable of 

detecting a magnetic signal as small as a few hundred milligauss. Information about the product 

and number of products could be then directed to the store's inventory management system. 

 

1.2.3  Tracking and Mapping for Medical Applications 

 

In another possible embodiment, a magnetic source could be used to track bodily functions or 

map organs such as the intestinal tract or blood stream. This sensor grid would consist of an 

arrangement of magnetic sensors incorporated in a suitable substrate sheet that is embedded in an 

examination table. Again, due to the nature of the magnetic field, and its ability not to be limited 

to line of site, tracking magnetic sources in the body will be much like tracking outside of the 

body. 

 

Additional modifications will be needed for inter-body tracking. The first and foremost will be 

the size and strength of the magnetic signature. The size of the source will be dictated by the 

application, “milli” scale for intestinal tract and “nano” scale for blood / vein mapping. Because 

of the size / strength relationships between most magnetic materials the strength of the magnet 

will also need to be reduced. Current magnetic resonance imaging (MRI) machines use magnetic 

field between 4.7 kG and 47 kG [15], but these fields are exterior to the body and are then 

reduced over distance. Although the body is able to tolerate large static magnetic fields, it does 

not fare as well with dynamic magnetic fields [16]. If a magnetic source was to be introduced to 

the body, it would need to be small, as to not create a large dynamic magnetic field, which has 

been linked to leukemia [17]. 
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Clarity and precision will be critical in this embodiment. Since the patient will be confined to the 

examination table, the magnetic sensors will only need to have a vertical range of the width of a 

body (approximately 18 in), instead of multiple feet as would be needed for large scale object 

tracking. In order to ensure needed details, the sensor network, or sensor substrate, will need to 

be denser. It may be necessary for several hundred sensors to be used and in varying 

configurations for suitable clarity. All data collection equipment, filters, and prediction models 

will be similar, as in the previous embodiments. 

 

1.3 Dissertation Outline 
 

This document is structured in the following format. Chapter 1 is the introduction, which also 

contains the purpose and objectives for performing the research, motivation and possible 

embodiments of the technology as well as this outline for the document. Chapter 2 contains a 

review of past literature that is applicable to the current research topic, including applicable 

sensor technologies, electromagnetic theory pertinent to tracking magnetic objects, developed 

tracking systems and their algorithms, and position and error estimation techniques. Chapter 3 

contains the research approach and methodology, which includes specifications for magnetic 

source and sensor, algorithms for determining position, and specifications for a data acquisition 

system to collect and process information. Chapter 4 contains the experimental approach and 

design, including the selected components and outlining their interactions. Chapter 5 contains an 

outline of experimental testing procedures and experimental results for the rotational and linear 

experimental apparatuses, and a summary of experimental results. Finally, Chapter 6 contains 

conclusions and the recommendations for future work. 
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Chapter 2 – Review of Literature 
 

 

This chapter will provide a review and background of the types of sensors and sensing 

technologies available, as well as a scheme for classification and typical usage. This chapter will 

also review previous embodiments of AC and pulsed DC magnetic location and tracking systems 

focusing on materials, implementation, and algorithms. Additionally, a review of works 

emphasizing position estimation and error reduction will also be included. This information will 

be critical in understand the design proposed in future sections of this document. 

 

2.1 Sensor Technologies 
 

Sensor technologies can be lumped into two primary groups—active sensing and passive 

sensing. Okamoto [18] states that the sole difference between the two is the type and source of 

electromagnetic waves being generated by the system. Active sensors have an internal power 

source, and thus are able to emit their own energy, or modulated signature. Passive sensors, on 

the other hand, have only the power of the receiving system, and therefore are only able to 

receive and re-emit (in the case of passive RFIDs) electromagnetic waves [19]. 

 

Okamoto mentions that passive sensing technologies, because of their use of naturally occurring 

electromagnetic (EM) waves, generally suffer from a reduced range. Active sensing 

technologies, which generate their own EM waves, and are easier to distinguish from naturally 

occurring EM waves [20]. This allows for an increase in detectable range and accuracy, but it 

often comes at a cost of complexity. Additionally, active sensors can be modulated, pulsed, or 

otherwise altered to enhance the range of resolution [18]. This alteration is done at the cost of 

power consumption, size, shape, and complexity. This increased power consumption allows 

active sensors to have increased measuring capabilities, such as monitoring phase and Doppler 

shifts. Passive sensors, however, operate under fewer constraints because the only power 

available is power received by the receiver system. 
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Additionally, Cheng and Sridhar [21] comment on the field of view (FOV) of both sensor 

technologies. They state that active sensors, although offering very high resolution, suffer from a 

narrow FOV. Passive sensors, on the other hand, offer an incredibly wide FOV, but often lack 

the precision that high resolution sensors offer  [21].  

 

2.2 Types and Characteristics of Magnetic Sensors 
 

Magnetic sensors have been used for over two millennia, with the earlier sensors being used for 

direction finding [22]. Better understanding of magnetic fields, and their applications, have 

expanded the possible use for such sensors past navigation alone. Such sensors are currently 

being used heavily in the field of object tracking and spatial orientation [23], [24], [25], [26], 

[27]. Various types of sensor technologies exist, including: magnetometers (search-coil, flux-

gate, optically pumped, nuclear-precession, SQUID, magnetoresistive, and fiber-optic), hall-

effect, magnetodiode, magnetotransistor, and magneto-optical. These technologies, as well as 

their respective detectable field strength can be seen in Figure 1.  

 

 

Figure 1 - Detectable field strengths for various magnetic sensing technologies [28] 
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Caruso et al. [22] classify magnetic sensors into three categories: low field, medium field, and 

high field sensing. Low field sensors are defined as sensors that are able to detect less than 1 µG. 

Sensors able to detect magnetic field strengths of 1 µG to 10 G will be classified as medium field 

sensors. Sensors with the ability to detect over ten gauss are said to be high field sensing 

magnetic sensors 

 

These magnetic sensing technologies can also be sorted by how the sensor is being used in 

relation to the Earth’s magnetic field. Lenz [28] defines three categories — high, medium, and 

low sensitivity. The boundary between the first and second categories is defined by the 

magnitude of the Earth’s magnetic field (approximately 0.1 to 1 Gauss). This boundary acts as a 

noise floor or ceiling. The boundary between the second and third categories is defined by the 

level at which the Earth’s magnetic field is stable. This range can vary between 10
-3

 to 10
-6

 

Gauss depending upon the frequency range. Figure 2 shows the most common applications and 

most common sensors for each category [28]. 

 

 

Figure 2 - Categorization of magnetic sensor applications [28] 
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2.3 Characteristics of Magnetic Fields and Flux Density 
 

To better understand the research problem, a brief theory behind electromagnetism is presented. 

The derivations shown here start from fundamental principles and move towards project-specific 

models. This section will include a discussion of magnetic fields, as well as covering permanent 

magnetic fields and magnetic materials. 

 

For the purposes of examining the low frequency magnetic field, we can ignore the electric flux 

density as well as the electric field strength, and more closely focus on the magnetic flux density 

(B-field) and the magnetic field strength (H-field). The most familiar source of a magnetic field 

is from a bar magnet [29]. The bar magnet has two poles, denoted north (N) and south (S) which 

have equipotential lines connecting the two, illustrated in Figure 3. 

 

 
Figure 3 - Sample magnetic field lines from a bar magnet [29] 

 

 

Although non-visual, the presence of a magnetic field can be determined by measuring either the 

magnetic flux density (B-field) or the magnetic field strength (H-field). They are related in free-

space via: 

 

   
 
 , (2.3.1) 

 

where B is the magnetic flux density, µ0 is the free space permeability, and H is 

the magnetic field strength. 

 

 

The properties of magnetic fields differ in the presence of matter. This is introduced as the 

material magnetization. As shown in many texts [30], [31], [29], [32], the magnetic flux density, 
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B, of a magnetic source has two components—the magnetic field strength, H, and the 

magnetization of a magnet, M.  

 

   
 
     , (2.3.2) 

 

where B is the magnetic flux density, µ0 is the free space permeability, H is the 

magnetic field strength, and M is the magnetization of a magnetic material. 

 

 

To further examine characteristics of the B-field, attributes of the H-field and the magnetization 

of the material must first be explored. Macintyre [29] states that, when distance r is much greater 

than the largest dimension of the magnetic source, the H-field of magnetized objects can be 

determined by the following equation. 

 

  
            

    
  (2.3.3) 

 

where H is the magnetic field intensity, r is the vector distance between source 

and measurement,    is a unit vector along r, and m is the magnetic dipole 

moment. 

 

 

To aid in the description on magnetic dipoles, moments, and fields, current loops are generally 

used. Figure 4 illustrates an elementary current loop “used to represent the basic source of a 

magnetic field … current loops are assumed to be small with respect to the distance of 

observation” [33]. 

 

Figure 4 - Current loop used to define a simple magnetic field [33] 

 

 

Using this figure as a guide, an equation for the magnetic dipole moment, m, can be developed 

using the right-hand rule. 
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        , (2.3.4) 

 

where m is the magnetic dipole moment created from a small current loop with 

respect to the observer distance, r, i is the current flow around the loop of radius 

a, and    is the unit vector normal to the current loop. 

 

 

The magnetization can be directly related to the magnetic dipole moment (m) and its unit volume 

via the following equation [29]. 

 

   
  

      
  (2.3.5) 

 

where Mi is the magnetization of a magnetic material and mi is the magnetic 

dipole moment. 

 

 

The total magnetization is also directly related to the net magnetic dipole moment (m) via the 

following equation. 

 

   
  

      

 

   

  (2.3.6) 

 

where M is the total magnetization of a magnetic material and mi is the 

incremental magnetic dipole moment, and n is the number of infinitesimal dipole 

segments. 

 

 

Using (3.2.2), B can be rewritten just in terms of the magnetic dipole moment. 

 

      
              

    
 

  

      
 

 

  (2.3.7) 

 

where B is the magnetic flux density, r is the vector distance between source and 

measurement,    is a unit vector along r, and mi is the incremental magnetic dipole 

moment. 

 

 

From this derivation, based on a current carrying wire, it can be seen that the magnetic field 

decays at a rate of r
-3

 and is only dependent upon the magnetic dipole moment. This will be 

useful later in determining sensor position over the maximum detectable distance, r.  
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However, the B-field, in this form, is typically modeled as an ideal dipole, which is identical to 

that of a current carrying wire in the far field. [33] The ideal dipole is the most basic model in 

electromagnetism. It has north and south poles, and is illustrated in Figure 5. 

 

 
Figure 5 - Ideal magnetic dipole and its field lines 

 

 

The magnetic flux density of the dipole can classically be defined as the curl of the magnetic 

vector potential [34]. The magnetic vector potential, A, of an ideal magnetic dipole can be 

defined as shown in (2.3.8) [35]: 

 

       
  

  
 
      

    
  (2.3.8) 

 

where A is the magnetic vector potential, r is the vector distance between source 

and measurement,    is a unit vector along r, µ0 is the free space permeability, and 

m is the magnetic dipole moment. 

 

 

The B-field is defined as the curl of A with the addition of the Earth's magnetic flux density [34], 

where: 

 

                      , or (2.3.9) 

 

       
  

  
   

      

    
        (2.3.10) 

 

 

Mathematical simplification of the del ( ) operator results in (2.3.11) 
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         (2.3.11) 

 

where B is the magnetic flux density, BEARTH is the magnetic flux density of the 

Earth , r is the vector distance between source and measurement,    is a unit vector 

along r, µ0 is the free space permeability, and m is the magnetic dipole moment. 

 

 

This model, as a function of the magnetic dipole moment and the distance between the source 

and sensor, is very similar to that of a current carrying wire shown in (2.3.7) when accounting for 

all incremental components of the magnetic dipole moment. Because at distances far away 

(magnetically), magnetic sources have fields that resemble an ideal dipole. This will be the 

magnetic model used in the tracking application described in the following sections of this 

document. This dipole model also accounts for the magnetic noise generated from the Earth’s 

magnetic field [36]. 

 

2.3.1 Remanent Magnetization 

 

Discussed in the previous section, the magnetic field is dependent upon the material it passes 

through. Equation (3.2.2) suggests that there is a second factor in the determination of the B-

field, M, the magnetization of a material. Because neither the magnetic dipole moment nor the 

magnetization have a comparable meaning, a new term, Br, is introduced. Br is termed 

“remanence” or “remanent magnetization” and is defined as the value of the B-field when there 

is no external H-field, and is the product of the magnetization and free space permeability [37]. 

 

      , (2.3.1.1) 

 

where Br is the remanent magnetization, µ0 is the free space permeability, and M 

is the magnetization of a magnetic material. 

 

 

(3.2.2) can be substituted yielding a new definition for the B-field: 
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        , (2.3.1.2) 

 

where B is the magnetic flux density, Br is the remanent magnetization, µ0 is the 

free space permeability, and H is the magnetic field intensity. 

 

 

Physically, the remanent magnetism value, Br, is magnetism that is left behind once a magnetic 

field is applied and removed [35]. This can be thought of as the energy that is stored in each and 

every permanent magnet and magnetic material. The "strength" of permanent magnets is 

determined by their remanent magnetization. 

 

2.3.2 Magnetic Susceptibility and Permeability 

 

Jiles [38] claims that magnetic materials are defined by their “bulk susceptibility” or magnetic 

susceptibility (χ). Jiles [38] also states that under a constant temperature and within a relatively 

small magnetic field, diamagnetic and paramagnetic susceptibilities are constant. This allows for 

the following: 

 

    , (2.3.2.1) 

 

where M is the magnetization of a magnetic material, χ is the material 

susceptibility, and H is the magnetic field strength. 

 

 

From (3.2.2),  

 

          , 

 

(2.3.2.2) 

 

       , and 

 

(2.3.2.3) 

 

where B is the magnetic flux density, χ is the material susceptibility, µ0 is the free 

space permeability, µr is the relative permeability, µ is the total magnetic 

permeability, and H is the magnetic field strength. 

 

 

This result allows a comparison between The B- and H-fields at low magnetic field strengths 

without taking the magnetization M into account [31]. This condition also allows for the 

introduction of relative permeability, µr, which is the comparison for how susceptible a material 
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is to be magnetized. Inan [31] lists relative permeability for several common diamagnetic and 

paramagnetic materials at standard temperature and pressure, which can be seen in Table 1.  

 

 
Table 1 - Relative permeabilities for common diamagnetic and paramagnetic elements and compounds [31] 

 

Material Relative permeability (µr) 

Air 1.00000037 

Aluminum 1.000021 

Copper 0.9999906 

Lead 0.9999831 

Water 0.9999912 

 

 

From (2.3.2.3), magnetic permeability is comprised of two components: relative permeability 

and permeability of free space, as seen in the equation below. 

 

      , (2.3.2.4) 

 

where µ is the magnetic permeability, µ0 is the free space permeability, and µr is 

the relative permeability. 

 

 

Given (2.3.2.4), that magnetic permeability is comprised of relative permeability and the 

permeability of free space, diamagnetic and paramagnetic materials from Table 1 can be 

assumed to have a magnetic permeability equal to that of permeability in free space (µr = 1). This 

is significant in the area of electromagnetics, because all of these mediums are virtually identical 

to a magnetic field. 

 

This, however, is not the case for ferromagnetic materials. Moskowitz [39] states, “ferromagnetic 

materials are usually what we consider being magnetic (i.e. behaving like iron)”. Inan [31] lists 

relative permeability for ferromagnetic elements at standard temperature and pressure, which can 

be seen in Table 2. These permeabilities are generally frequency dependent above approximately 

10 kHz [40]. 
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Table 2 - Relative permeabilities for common ferromagnetic elements (DC, no saturation) [31] 

 

Material Relative permeability (µr) 

Cobalt 250 

Iron 280000 

Nickel 600 

Steel 100 

 

 

Relative permeabilities in the table above range from hundreds to hundreds of thousands. As the 

relative permeability of a material increases, it can better support the formation of a magnetic 

field inside that medium [31]. These materials would not make a suitable sensor network 

medium, but high mu materials are one of the components to an ideal magnetic target. 

 

2.3.3 Magnetic Source Material 

 

Based upon the descriptions of magnetic classifications, ferromagnetic materials will be 

examined for potential use as the magnetic source. Heck [41] identifies the ferromagnetic 

elements (iron, cobalt and nickel) and gives an in-depth discussion on the origin of magnetic 

materials based upon their composition.  Petrie [42] has identified significant advantages and 

disadvantages with some of today’s most common permanent magnetic sources. A summary of 

these sources can be seen in Table 3. 

 

Table 3 - Comparison of ferromagnetic materials [42] 

 

Magnetic Type Advantages Disadvantages 

Neodymium Iron 

Boron 

Highest energy material 

Low cost 

Many property combinations available 

New design typically required for use 

Low maximum temperature use 

Can be difficult to handle due to strength 

Processing is difficult to control and 

automate 

Rare Earth 

Cobalt 

High energy at room temperature 

Many property combinations available 

Straight-line demagnetization curve 

Expensive Materials 

Can be difficult to handle due to strength 

High field strength needed to fully 

magnetize 

Ferrite Magnets Low material cost 

Many property combinations available 

Lower magnetizing strength needed 

High electrical resistance 

Low energy 

Resistance to demagnetization reduced 

Brittle 
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Alnico Mature product with many producers 

High maximum operating 

temperatures 

Corrosion resistant 

Low processing cost 

Many possible shapes and sizes 

Uses strategic materials 

Low coercivity 

Requires magnetization after assembly 

 

 

Due to the manufacturing and processing techniques, neodymium magnets have only become a 

contender for such tracking applications in the last decade. Because of this high energy potential 

(large Br) and low cost, these magnets are a logical choice for this research application. 

 

2.4 Object Location and Tracking Systems 
 

In this section, several systems used for tracking an object’s position and orientation will be 

reviewed and critiqued. The applications discussed in this section are used for tracking objects, 

specifically discussing sensor type, range, and magnetic field strength. 

 

2.4.1 Magnetic Field Based Technique for 3D Position Tracking 

 

Madawala and Pillay [43] have examined the use of magnetic sensors for three-dimensional 

tracking. Specifically, they proposed a simple and inexpensive way to track multiple garments 

during the wash cycle of a standard size washing machine. This was performed by placing small 

magnetic sensors on swatch test samples, and then placing them in the wash bin of a standard 

washing machine. The sensors used for this experiment were single axis Hall Effect magnetic 

sensors. Three of these sensors were placed orthogonal to one another, and attached to the test 

garment in order to determine its location in three-dimensional space. 

 

The wash basin was fitted with wound coils oriented in a way such that asymmetrical magnetic 

fields were created in the cylinder. This allows custom software to be able to track the swatch 

throughout the entire wash cycle. Ideally, a coil design would be created such that a unique 

magnetic signature would exist at all points in the wash basin.  
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To overcome the fact that multiple identical magnetic signatures exist in the wash basin, a 

calibration method has to be created to determine the exact position of the garment in three-

dimensional space in the basin. In order to calibrate the system, a number of data points were 

recorded to determine the magnetic field strength. These numbers were then stored in a lookup 

table in order to be referenced at a later time. The location of the garment can be predicted by 

measuring the actual magnetic field signature and comparing it to that of the lookup table, but 

this is not done in real-time.  

 

Several measurements may need to be recorded in order to find the initial position of the 

garment. Once the initial position is determined, a method was then determined to track the 

garment. The method used was to determine the closest match in the lookup table that was in the 

range of the constraints of the system—how fast could the garment move in the wash cycle 

between readings, given the rotational speed of the washing machine. During this process, the 

sensing coils move more than the garment (sensor) moves. 

 

In the experimental procedure, test setup used a 3-coil configuration with four turns powered 

with a DC source of 18 A. The frame of reference for the system is traveling at approximately 60 

– 100 revolutions per second, and the recording rate of the system was set at 1 Hz. Experimental 

results show that this configuration is able to track 83.3% of the space in the cylinder. The 

location of the sensor in the outer periphery (closest to the 3-coil loop) was unable to be located, 

probably due to the limitations of the Hall Effect sensors. The maximum detectable distance of 

this system is approximately 1 inch. The Hall Effect sensors, used due to their ease of setup and 

cost, can be replaced by other, more accurate magnetoresistive sensors, for production use. 

 

2.4.2 Magnetic Position and Orientation Tracking System 

 

Raab et al. [44] have also developed a magnetic position and orientation tracking system. Unlike 

its counterparts, this system uses a three-axis magnetic sensor in addition to an active three-axis 

magnetic source. The authors discuss the possibilities of using a buried magnetic dipole receiver 

to capture signals from four or five three-axis sensors to determine the location along a 

perimeter. A block diagram of such a system can be seen in Figure 6. 



19 

 

 

Figure 6 - Block diagram for magnetic position system [44] 

 

 

The system developed uses a three-axis magnetic sensor and a three-axis magnetic dipole source 

with three excitation ranges (used to determine position and orientation). In order to simplify 

calculations and computations, the source excitation and sensor outputs are represented as 

vectors—where each of the three excitation states that are used are linearly independent of one 

another [44]. 

 

The system is designed in such a way that the source and sensors can be regarded as point 

sources which “tracks the position and orientation of the sensor by determining small changes in 

the coordinates and then updating the previous measurements” [44]. The authors’ state, 

“applications of this system use source and sensor loops whose diameters are small in 

comparison to the distance separating them” [44]. It is for this reason that the sources and 

sensors can then be regarded as point sources and point sensors. The wavelength of the excitation 

signal can then be manipulated such that the quasi-static, or near-field, components are most 

significant. Using the three-axis sources and sensors, the properties of orthogonality can be 

exploited to determine the position and orientation.  

 

This system is designed to use a 12 bit analog-to-digital converter with update rates between 30 

and 120 Hz. The system is able to track objects by updating the previously recorded states by a 

small incremental change. The maximum range for this system is approximately 40 inches. This 

system, however, has several limitations; the first is that it must acquire a measurement in order 

to make a tracking position estimate. If for some reason a measurement cannot be made, the 
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system will take several iterations in order to determine position and orientation. The second is 

that this model is based on small angle approximations over small distances. If larger angles are 

measured, considerably large angle errors can be introduced into the system 

 

2.4.3 Tracking System using Hall Sensors and Permanent Magnets 

 

Schlageter et al. [36] analyze the use of Hall Effect sensors to track the position of a permanent 

magnet. This system uses sixteen identical Hall Effect sensors in a uniform grid as its sensor 

platform. The source is a permanent magnet. The layout for this system can be seen in Figure 7. 

 

 

Figure 7 - Coordinate system and sensor layout for Hall sensor tracking system [36] 

 

 

The authors use the Levenberg-Marquardt algorithm (LMA) shown in [45] to determine the 

coordinates of the magnet. LMA is a trust based, least squared minimizing method routine used 

for mainly nonlinear functions [45]. Quite adaptive and robust at tracking data, LMA has the 

ability to switch between method of steep and shallow descent. Additionally, this system is able 

to detect the magnetic source up to a range of 5.5 inches with a detectable magnetic field of 150 

mG. This system is capable of tracking objects with a sampling frequency up to 50 Hz, which is 

limited by its computational method (LMA). 
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This system takes the magnetic field of the Earth into account. This background noise is detected 

and applied during a calibration phase, before the system is used to track the magnetic source. 

The authors state a major limitation of this system—the system will be ideal only if the transient 

magnetic background noise remains relatively consistent, and there is no change in the field’s 

homogeneity (there is no introduction of large magnetic sources). If either of these occurs, the 

accuracy of the system will decrease. 

 

Schlageter et al. introduce additional valuable information about ambient and system noise that 

can be applied to magnetic tracking. The authors claim, “as long as we are interested in low 

frequency applications, the main extrinsic noise is inhomogeneity of the environmental magnetic 

field, including the earth magnetic field” [36]. They also claim the main cause of intrinsic noise 

is the 1/f noise due to sensor noise which is discussed further in [36] and [46]. The authors claim 

the system has accuracy of ±0.21 inches while detecting B-fields of approximately 150 mG. 

 

2.4.4 Characterizations of a Novel Magnetic Tracking System 

 

Sherman et al. [47] continue to examine the work of Schlageter et al [36], [46] analyzing the use 

of Hall Effect sensors to track the position of a permanent magnet. This modified system now 

uses 27 identical Hall-effect sensors in a modified grid (Figure 8) as its sensor platform.  

 

 

Figure 8 - Sensor layout for novel tracking system [47] 
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Again, the source used is a permanent magnet. The sensor layout for this system can be seen in 

Figure 7. 

  

Figure 9 - Coordinate system for novel tracking system [47] 

 

 

For the magnetic source, the authors use two permanent magnets. The first, for distances less 

than 6 in, is 14.25 kG with a 0.079 inch diameter. The second, for distances less than 13 inches, 

is 13.1 kG with a 0.18 inch diameter. The authors use the following equation to estimate 

position: 

 

    

  

  

  

  
   

    
   

 
 
 
 
                         

  
 

        
        

    

  (2.4.4.1) 

 

 

The algorithm described is two-phased. The initial position was set to (0,0,Bz). The first phase is 

to assume a value for θ and φ (both set to zero), and then to solve for x, y, and z. The second 

phase is  using these values to solve for θ and φ. Once stabilized, this method continues to track 

the magnetic source. 

 

The authors again use the Levenberg-Marquardt algorithm (LMA) shown in [45] to find the 

coordinates of the magnetic source. This system is able to detect the magnetic source up to a 

range of 11.8 inches. This system is designed to capture 1500 samples at a sampling frequency of 
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4 kHz from each sensor. Although this system is able to track to within ±4º accuracy, this model 

neglects ambient magnetic interference. 

 

2.4.5 Summary 

 

Several applications for tracking an object’s position and orientation have been reviewed. Most 

of these applications used some type of small perturbation algorithms for tracking, with different 

types of sources and sensors to do the job. Most of the systems also require elaborate, multiple 

axis receivers. Although successful at tracking relatively slow moving object over small ranges, 

none of the addressed systems are able to track objects over larger distances. Half of the systems 

examined also require both a powered source and receiver. Table 4 compares the results in this 

section to the desired results of the proposed system. 

 

Table 4 - Comparison of tracking systems 

 
Authors Sensor Type Source Type Range Sampling Freq. Accuracy 

Madawala and Pillay Hall Effect  Coil windings 1 in 1 Hz ± 0.59 in 

Raab et al. Magnetoresistive  
3-axis magnetic 

dipole 
39 in 30-120 Hz NR

*
 

Schlageter et al. Hall Effect  Permanent Magnet 5.5 in 50 Hz ± 0.59 in 

Sherman et al. Hall Effect NdFeB Magnet 12 in 100 Hz ± 0.21 in 

Proposed System Magnetoresistive NdFeB Magnet 24-36 in > 120 Hz ~ 0.2 in 

 NR
*
: information not reported by source. 

 

 

The intent of the proposed system is to maintain the detectable range and accuracy of the 

previously reviewed systems (Table 4) while using a simple permanent magnet target moving in 

three-dimensional space using the method proposed in this document. 

 

While most systems presented here are able to track and locate objects within the range of 

inches, the proposed system will track an object up to an approximate range of 2 to 3 ft, limited 

primarily by the Earth's field acting as a noise floor. A successfully system will include a sensor 
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package capable of detecting a large magnetic field, ranging from the kilo-Gauss range (to detect 

a nearby magnetic source) to the milli-Gauss range (to detect perturbations in the Earth's 

magnetic field). A magnetoresistive sensor will be shown to be adequate for this job. A source 

that is “strong enough”, or one that has a high remanent magnetism, is also needed. Rare Earth 

magnets, such as a Neodymium (NdFeB) magnet, will be shown to be well suited for this task; 

this is mainly due to the fact that they require no additional excitation energy.  

 

2.5 Positioning in the Presence of Magnetic Noise  
 

Earlier work in magnetic tracking has shown that there are many pitfalls with passive sensing 

(with using a DC or permanent magnetic source). One reason, and the main reason modulated 

signals were developed, was to deal with random electromagnetic phenomena, specifically 

ambient magnetic noise.  

 

With regards to the proposed system, magnetic noise can be categorized into either intrinsic or 

extrinsic noise. Intrinsic noise can be attributed to either the magnetic source, the acquisition 

system, or noise internal to the system. Bittel [48] discusses noise of ferromagnetic materials and 

his findings show an attenuation of the power spectrum approaching the near field regime. This 

coincides with the findings of Schlageter [36] who stated that the main cause of intrinsic noise is 

the 1/f sensor noise. This type of sensor noise will need to be addressed during the construction 

of the acquisition system. Work by Stutzke et al [49] has suggested techniques to help limit this 

sensor noise with good experimental practice. 

 

The second category is extrinsic noise, or noise external to the system. The basis for this type of 

noise is the low frequency of the Earth’s magnetic field. Experimental research has been 

performed to measure the natural noise floor and map the magnetic  characteristics of the Earth 

[50]. Data gathered in the United States (Colorado and California) suggest that the dynamic 

range, 0 to 100 kHz, of the natural noise floor shows the magnetic noise density to be on the 

order of 10
-8

 G/√Hz  which decays by approximately 10 dB per decade [51].  
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Additionally, using the World Magnetic Model [52] provided by the National Oceanic and 

Atmospheric Administration (NOAA), information on magnetic fields was provided specifically 

for Morgantown, WV (39°38'04" N 79°57'22" W at an altitude of 555 m) for December 2011.  

 

The Earth's total field (F) is composed of a horizontal (H) and vertical (Z) intensity, determined 

by angles of declination (D) and inclination (I), as shown in Figure 10 [53]. Recorded data from 

NOAA reports a total field of 31,787 nT (320 mG) and inward field, or z component, of -15,608 

nT (-160 mG), with a change/year of 44.1 nT (440 µG) and -80.2 nT (-800 µG), respectively.  

 

 

Figure 10 - Vector components of the Earth magnetic field [53] 

 

 

The change in the inward field between December 1 and December 31, 2011 was 0.13 mG, 

averaging a rate of change of 0.01 mG/day. This data is sampled and averaged over the day. A 

high resolution digital fluxgate magnetometer, located in Fredericksburg, VA, continuously 

recorded data [54] for the United State Geological Survey (USGS) at 1 Hz, and has recorded the 

range of the inward field which varies 14.44 nT (0.144 mG) during a 60 minute operational 

window, as seen in Figure 11. This corresponds closely with other reports saying that the broad-

scale, solar-quiet magnetic fields have an order of magnitude of 0.2 - 0.3 mG [55], and that the 

oscillations of these time-varying fields are on the order of 0.01 mG [56].  
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Figure 11 - Plot of recorded magnetic flux density sampled at 1 Hz for a 60 minute duration at 

Fredericksburg, VA (USGS) 

 

 

In a later chapter, experimental data collected will show that the magnetic flux density range 

varies between 4 to 7 mG (ripple) on top of the DC z-component of the Earth's magnetic field, 

during 30 minutes of operation for the proposed magnetic sensor network in a laboratory setting. 

As discussed later, this larger variation is due to additional noise in the magnetic sensors, data 

acquisition hardware, and external noise (overhead lights, power lines, etc.) in the laboratory 

environment. 4 mG will be the noise variation used for the remainder of the derivations in this 

document. 

 

2.6 Review of Position Estimation and Error Reduction 
 

 

Bayesian filtering techniques, including Kalman filters, have been addressed for predicting and 

estimating position [57], [58]. Bayesian filters use probability models to determine dynamic 

changes in a system with noise [59]. Fox et al state, “Kalman filters are the most widely used 

variant of Bayes filters” [59]. The premise behind a Kalman filter is to predict the results based 

upon two moments—the mean and the covariance matrix.  
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The advantage of predicting based solely upon the mean and covariance is that it yields greater 

efficiency during computation. Simon [60] adds, “The Kalman filter not only works well in 

practice, but it is theoretically attractive because it can be shown that of all possible filters, it is 

the one that minimizes the variance of the estimation error.” Kalman filters use a state transition 

model and control inputs to help predict future states of a system. A typical Kalman filtering 

algorithm includes two parts: predict and update equations. The algorithm is shown below [61]. 

 

Predict 

 

Determine predicted (a priori) state estimate (  ) and estimate covariance (P) at instance k. 

 

                           ,  

 

(2.6.1) 

 

                   , and 

 

(2.6.2) 

 

                   
    , 

 

(2.6.3) 

 

 

given 

 

             ,  

 

(2.6.4) 

 

             , and 

 

(2.6.5) 

 

 

where A is the state transition matrix, B is the control input matrix, H is the 

measurement output matrix , u is the control input vector, w is the process noise, ν 

is the measurement noise, and Q is the covariance of process noise, and R is the 

covariance of  the measurement noise.. 

 

 

Update 

 

Calculate (a posteriori) updated innovation or measurement residual (  ), innovation covariance 

(S), optimal Kalman gain (K), and updated (a posteriori) state estimate (   ) and estimate 

covariance (P) given true measurement (z). 
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                , (2.6.6) 

  

             
    , (2.6.7) 

  

           
   

  
, (2.6.8) 

  

                   , and (2.6.9) 

  

                   , (2.6.10) 

 

 where is the true measurement and R is the covariance of  the measurement noise. 

 

 

Additionally, Maybeck [62] examines Kalman filters in the presence of stochastic models. He 

introduces a two model system (predictor system) in which an indirect measurement, or guess, is 

used alongside a measurement where both can carry different weights. Maybeck [62] uses an 

additive probability density to determine a “good” measurement. A graphical representation of 

this can be seen in Figure 12. This can be compared to a system that uses a hybrid of actual and 

predicted information to achieve a final, reported value, which can be more accurate than either 

separate input. 

 

Figure 12 - Graphical representation of additive probability density [62] 
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Kalman filters have been used as position estimators in such applications as magnetic resonance 

imaging [63], speech enhancement [64], structural identification [65], ultrasonic ranging [66], 

global positioning [67], and robotic tracking [68], [69], [70]. Kalman [57] designed his work 

around the basic tenets behind positioning and tracking systems: prediction of random signals, 

ability to determine a random signal from random noise, and detection and location of specific 

signals in the presence of noise. Many, if not all, tracker-estimator and position predicting 

systems identified take advantage of these principles. 

 

Chan, Hu, and Plant [71] have investigated one such Kalman filtering scheme. These researchers 

have derived their Kalman filter and detection system from least squares estimators. The authors 

use the system’s state space model as the beginnings of the design process. The system 

components include a state-space model, control laws, and input noise. To simplify calculations, 

all filtering is performed using the rectangular coordinate system. This process has been 

implemented in several cases [66], [67], [68] in order to avoid more complex computations in 

two-dimensional cases.  

 

Chan et al. [71] study the effects of the number of measurements taken versus the theoretical and 

experimental variance. As expected, the larger number of samples yields a smaller variance. The 

authors discuss their rather simple implementation of the least squares estimator, detecting 

systems, and Kalman filter. They discuss a mechanism used to hone the estimator; comparing the 

actual value, estimated value, and a set threshold value. To obtain better results, the estimator 

value changes based upon the deviation to theoretical. “The idea is to have a [threshold] high 

enough to reduce the false alarm rate and allow the filter to settle” [71]. This method could be 

easily adapted for other tracking schemes, like the one proposed by this current work. 

 

A Kalman filter design has also been implemented for passive tracking. Weiss and Moore [72] 

introduce such a system that is based on the Extended Kalman Filter (EKF). They state, 

“Extended Kalman Filters are attractive for such applications but their performance can be 

significantly improved with additional processing” [72]. “The Extended Kalman Filter algorithm 

is an optimal recursive algorithm for nonlinear systems.” [73] Dhaouadi et al. [73] summarize 

factors for the Extended Kalman Filter: knowledge of the system and its dynamics, description of 
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the system noise (including measurement error), and information about initial conditions. Given 

the following system equations (2.6.11) - (2.6.13) [74], the block diagram for the typical Kalman 

filter can be seen in Figure 13. 

 

           
            

     
  

, (2.6.11) 

 

                              , and (2.6.12) 

 

                    (2.6.13) 

 

 

 

Figure 13 - Block diagram of Kalman Filter [74] 

 

 

Both the Kalman and Extended Kalman Filters can be used as an observer (i.e. tracking problem) 

for a system that may or may not have the ability for user input. The Kalman filter can be used 

“on-line” (real time) or “off-line” (post processing). Although Kalman filters are typically used 

for position estimation, other methods such as particle filters [75] have also been shown to have 

equal performance. Either of these algorithms / filters would also be applicable to this topic of 

magnetic tracking. The integration of a Kalman filter for this system will be discussed in detail a 

later section of this document. 
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Chapter 3 – Research Approach and Methodology 
 

 

Chapter 2 has provided background information pertinent to the magnetic location problem, 

including current location and tracking methods and algorithms, previous embodiments of 

systems already developed, and the theory behind both. This chapter will use guidance from 

other systems, as well as the provided theory in order to develop an approach to solving the 

proposed problem.  

 

This chapter will discuss developing a model for a permanent magnetic source, permanent 

magnetic source specifications, including magnetic flux density, verification of the source with 

finite element modeling, description of the magnetic sensor network and its specifications, as 

well as an apparatus for experimental testing, and an algorithm for determining position and 

orientation, including position estimation and error reduction. Finally, specifications for a data 

acquisition system that will be needed to collect information, and the hardware needed to process 

the information will be addressed. 

 

3.1 Developing a Model for a Permanent Magnetic Source 
 

Before characterizing the magnetic source and specifications for this system, we must first 

examine how to model the source, and the geometry of the established magnetic field 

distribution. The magnetic source that is examined in this chapter will be a permanent magnet.  

Because magnetic fields of sources far from the point of measurement resemble that of a 

magnetic dipole, the dipole equation will serve as a starting point for developing a magnetic 

model. This magnetic dipole equation was introduced as (2.3.11) and is duplicated here. 

 

       
  

 
  

           

    
          (3.1.1) 

 

where B is the magnetic flux density, Br is the surface remanent magnetization, 

BEARTH is the magnetic flux density of the Earth, r is the vector distance between 

source and measurement,    is a unit vector along r, µ0 is the free space 

permeability, and m is the magnetic dipole moment. 
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Using the fact that m and r are vectors composed of three-dimensional components, (3.1.2) and 

(3.1.3), (3.1.1) can be expanded to include three dimensions of a position vector and three 

dimensions of dipole moment vector, as seen in (3.1.4). 

 

          , (3.1.2) 

 

            , (3.1.3) 

 

                 

 
  

 
  

                            

           
  

          

           
  

         

(3.1.4) 

 

where B is the magnetic flux density, Br is the surface remanent magnetization,  

(x, y, z) are vector components of B, x, y, and z are components of the position 

vector in three-dimensional space, µ0 is the free space permeability, and (mx, my, 

mz) are vector components of m. 

 

 

(3.1.4) contains information for all vector components of B: Bx , By, and Bz. Because this system 

will be using a single-axis sensor network, the only relevant information will be contained in Bz 

and thus (3.1.4) can be reduced, accordingly. 

 

                  

 
   

 
 
                 

           
  

  

           
          

  
(3.1.5) 

 

where Bz is the z-axis component of B, BzEARTH is the z-component of the magnetic flux 

density of the Earth and    
 is the surface remanent magnetization in the z-direction. 

 

 

The proposed system uses a model of a magnetic dipole, which is symmetric about the z-axis. 

Using this information and spherical conversions in (3.1.6), Bz can be rewritten as a function of 

three degrees of position and two degrees of orientation (θ, elevation above the x-y plane and φ, 
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rotation about the z-axis starting from -x and going clockwise). A definition of this coordinate 

system can be seen in Figure 14. 

 

                 , 

                 , 

           , and 

 

      
    

    
   , 

(3.1.6) 

 

where mx, my, and mz are the components of the magnetic dipole moment, θ is 

elevation above the x-y plane, φ is rotation about the z-axis, and ρ is the spherical 

radius set to unity (for symmetrical geometries). 

 

 

             

 
   

 
 
                                         

           
 

 
      

           
          

  

(3.1.7) 

 

where Bz is the z-axis component of B,    
 is the surface remanent magnetization 

in the z-direction, x, y, and z are positions in three-dimensional space of the field 

point, θ is elevation above the x-y plane, φ is rotation about the z-axis, and µ0 is 

the free space permeability. 

 

 

 
Figure 14 - Definition of model coordinate system 
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Equation (3.1.7) describes the Bz for an ideal magnetic dipole at (x, y, z) from a magnetic source, 

located at the origin, that is oriented θ degrees above the x-y plane and φ degrees about the z-

axis. This equation is valid for the magnetic source anywhere in three-dimensional space with 0° 

≤  θ  ≤ 90° and 0° ≤  θ, φ ≤ 360°. 

 

3.2 Permanent Magnetic Source and Specifications 
 

Tracking applications require a source to be tracked. Earlier sections have discussed the benefits 

of a permanent magnetic source, but have not yet examined physical characteristics. The 

following sections will examine characteristics such as physical shape, material and B-field 

characteristics to identify suitable candidates for a permanent magnetic source. 

 

3.2.1 Magnetic Source Geometry 

 

Choosing the physical shape of a permanent magnet is a critical process in the simplification of 

calculating position and orientation in three-dimensional space. Because the magnetic field 

distribution is linked closely to the geometry of the magnet, choosing a "geometrically simple" 

shape, such as a cylinder or disk, will generate a the magnetic field resembles that of a magnetic 

dipole, relatively close to the magnet.  

 

Using computational electromagnetic software [76], the magnetic flux density calculated and 

magnetic field lines can be outlined for a disk magnet. Figure 15 shows the standardized 

magnetic flux density and field lines for a cylindrical 1 kG permanent magnetic dipole disc with 

a 1 inch diameter and 0.25 inch tall. 
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Figure 15 - Simulated magnetic flux density for 1 kG permanent magnetic source centered at the origin on 

the x-y plane at z = 0 inches. 

 

 

From Figure 15, the flux density can be seen in two-dimensions with the largest magnetic flux 

density at the edges of the magnetic and the magnitude of the magnetic flux density approaching 

a spherical shape as it propagates from the magnet, as predicted [77], [78]. Because of the 

symmetry present in the permanent magnetic source, this figure can easily be interpreted in 

three-dimensions (by revolving around the z-axis). At positions very close to the source, 

magnetic flux density tends to form lobes, similar to the field lines. At positions a couple of 

times larger than the dimensions of the source, the total magnitude of the magnetic flux density 

approaches a spherical shape, as shown by the white outlines. The z-component of magnetic flux 

also approaches a spherical distribution on the x-y plane. Using this information, the three-

dimensional position of the sphere can be easily determined.  
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3.2.2 Magnetic Flux Density of Source  

 

A method of determining the orientation of the magnetic source needs to be addressed. Magnetic 

flux density, shown in Figure 15, is only one component of the magnetic signature. The magnetic 

poles of the permanent magnet are connected via field lines. The magnetic field lines or the path 

of the magnetic field from the North to South poles, of the magnet can be used to help determine 

orientation. Figure 16 shows the simulated [79] magnetic field lines for a permanent magnetic 

source. 

 

 
 

Figure 16 - Simulated magnetic field lines for normalized permanent magnetic source centered at the origin 

on the x-y plane at z = 0 ft. 

 

 

Although there are an infinite number of field lines connecting the two poles of the permanent 

magnet, the directions of the field lines are always consistent—North to South. This fact can be 

used to aide in determining the orientation of the source.  

 

A computer simulation was performed with a permanent magnet of unit strength with rotation 0°, 

90°, 180°, and 270° about the x-axis. By looking at the magnetic flux density for various 

orientations, uniqueness can begin to be identified. The figures below (Figure 17 - Figure 24) 

show a simulated plot the magnetic flux density and followed by magnetic field lines, when the 

source is rotated at 0°, 90°, 180° and 270° about the x-axis, respectively. Plots of magnetic flux 

density are of a magnetic source (3.308 kG) at a distance of 9.84 ft (or 3 m) from the x-y plane.  

 

x 
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Figure 17 - Simulated magnetic flux density of a 1 kG 

magnetic source at z = 9.84 ft above origin with orientation 

of 0° about x-axis. 

 

 
Figure 18 - Simulated magnetic field lines of a 

1 kG magnetic source at origin with 

orientation of 0° about x-axis.  

 

Figure 19 - Simulated magnetic flux density of a 1 kG 

magnetic source at z = 9.84 ft above origin with orientation 

of 90° about x-axis. 

 

 

 

Figure 20 - Simulated magnetic field lines of a 

1 kG magnetic source at origin with 

orientation of 90° about x-axis. 
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Figure 21 - Simulated magnetic flux density of a 1 kG 

magnetic source at z = 9.84 ft above origin with 

orientation of 180° about x-axis. 

 

 
Figure 22 - Simulated magnetic field lines of a 1 

kG magnetic source at origin with orientation of 

180° about x-axis. 

 

Figure 23 - Simulated magnetic flux density of a 1 kG 

magnetic source at z = 9.84 ft above origin with 

orientation of 270° about x-axis. 

 

 

 

Figure 24 - Simulated magnetic field lines of a 1 

kG magnetic source at origin with orientation of 

270° about x-axis. 
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Although the magnitude of the magnetic flux density plots change as the detection plane gets 

closer to the source, the trends (positive and negative) remain the same. From the uniqueness of 

these four plots with respect to the sensor plane, it is clear that by tracking the magnetic field 

magnitudes and directions, the orientation of the source can be discovered. In order to determine 

orientation with any precision, more than four sets of information will need to be gathered. Since 

the solution to the general form of the magnetic field equations are complex, it would be very 

tedious to directly solve for the position and orientation of the source in three-dimensions, 

analytically. Since a detailed lookup table can be very large and may require its own algorithms, 

and a numerical (iterative) solution can be computational intensive, using an analytical 

expression (even if only approximated) would be computationally simpler. Magnetic symmetry, 

such as the geometry previously discussed in this document, and estimation can also be 

implemented to aide in quick, accurate computation. 

 

3.3 Verification of Magnetic Model with Finite Element Modeling 
 

Using COMSOL Multiphysics, a finite element computer simulation software package [76] was 

used to verify the validity of using the dipole model outside of its far-field constraint. For this 

computational verification, the COMSOL's AC/DC simulator [80] was used with the “magnetic 

field, no current (mfnc)” modeling package. The simulation contains a magnetic disk, with a 1 

inch diameter and 0.25 inch height in a control volume 8 ft in length, width, and height. Table 5 

includes information on the electromagnetic characteristics of both the neodymium magnet and 

the air, in the control volume. 

 

Table 5 - Electromagnetic characteristics for computational simulation constants. 

 

Medium Characteristic Value Source 

Air 

Conductivity (σ) [S/m] 5e
-15 

 [81] 

Relative permittivity (εr) 1.00058986 [82] 

Relative permeability (µr) 1.0000003 [82] 

Neodymium 

Conductivity (σ) [S/m] 1.6e
6
  [83] 

Relative permeability (µr) 1.05 [84] 

Remanent Magnetization (Br) 3.309 kG [83] 
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Using the "magnetic field, no current" modeling package and a dynamic mesh (nodes between 5 

and 100 mm), a linear solver was used to determine the simulated magnetic flux density at 12 

inches from the magnetic source 

 

 

Figure 25 - Plot of simulated two-dimensional magnetic flux density over control volume from a distance of 

12 inches away from magnetic source (with θ = 0°) 

 

 

Figure 26 - Plot of simulated, extruded three-dimensional magnetic flux density over control volume from a 

distance of 12 inches away from magnetic source (with θ = 0°) 
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Figure 27, show a comparison of the magnetic flux density 12, 24, and 36 inches from the 

magnetic source. 

 

 

Figure 27 - Plot of simulated magnetic flux density over defined control volume. 

 

A similar process was used to model a magnetic source rotated about the x-axis at angles of 15°, 

30°, 45°, 60°, 75°, and 90° and computational results were then compared. Plots comparing 

analytical and simulated results for one case (θ = 0°) are shown in Figure 28, Figure 29, and 

Figure 30 for a distance of 12, 24, and 36 inches away from the magnetic source, respectively.  
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Figure 28 - Analytical model (MATLAB) vs. computational simulation (COMSOL) from a distance of 

approximately 12 inches away from magnetic source (with θ = 60°) 

 

 

 

 

Figure 29 - Analytical model (MATLAB) vs. computational simulation (COMSOL) from a distance of 

approximately 24 inches away from magnetic source (with θ = 60°) 
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Figure 30 - Analytical model (MATLAB) vs. computational simulation (COMSOL) from a distance of 

approximately 36 inches away from magnetic source (with θ = 60°) 

 

At a distance of 12, 24, and 36 inches, the mean percent error of the dipole model compared to 

the magnetic source is 10.77%, 7.66%, and 2.37%, respectively, collected from the data 

presented in Figure 28, Figure 29, and Figure 30. This is exactly what one would expect; as you 

move away from the magnetic source, it looks closer to a magnetic dipole. Additionally, the root 

mean squared error is also projected to be 3.87mG, 0.68 mG and 0.49 mG for approximately 36, 

24, and 12 inches, respectively. These values can be used to aid in determining the sensitivity of 

the sensor needed to detect the magnetic field at these distances. These simulated values will also 

be validated and supported with experimental data, shown in the next chapter. 

 

3.4 Magnetic Sensor Network and Specifications 
 

 

The magnetic sensor network conceived for this research is composed solely of one dimensional 

magnetometers oriented in the z-axis. These sensors measure the magnetic flux density passing 

through the sensor, and cannot distinguish between magnetic flux from the magnetic source, 

Earth's field, or ambient magnetic noise. It was suggested in (3.1.1) that these magnetic flux 
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components are additive. Electromagnetic waves, specifically magnetic fields in free-space, obey 

the superposition principle, [85], [86]: 

 

                             , (3.4.1) 

 

where Bnet is the net magnetic flux density composed of: BEarth, the contribution 

of the Earth's magnetic flux density, BMagnet, the contribution of the magnet's 

magnetic flux density, and BNoise, the contribution of magnetic flux density noise, 

both intrinsic and extrinsic. 

 

 

Using a 3.309 kG permanent magnet 12 inches away from the sensor, uniformly distributed 

magnetic noise of 4 mG, and a DC Earth field component of 160 mG, Figure 31 and Figure 32 

show the superposition of all magnetic flux densities as seen in (3.4.1). 

 

 

Figure 31 - Plot of the superposition of the magnetic flux densities of a permanent magnet, DC Earth field 

component, and magnetic noise 
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Figure 32 - Scaled plot of the superposition of the magnetic flux densities to show magnetic noise variations 

 

 

For remainder of the derivations in this dissertation, it is assumed that the Earth's DC field can be 

measured before the introduction of the magnetic source, as shown in Figure 31, and for the 

duration of the testing will remain relatively constant, as shown in Figure 11, and thus can be 

removed as shown in (3.4.1). The remainder of the net B-field will include magnetic flux density 

components of the magnetic source and magnetic noise. 

 

For the development of the layout and design of the sensor network, characteristics of a 

Neodymium disc magnetic was used because of its larger remanent magnetism. The following 

information was used in developing a permanent magnetic sensor network. 

 

Table 6 - Table of magnet characteristics and sensor characteristics used  

for modeling measureable magnetic field distance (N52 NdFeB) [87],[88] 
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Given this information, a plot of the maximum detectable distance for the magnetic sensor can be 

created (with the DC Earth field component removed). The sensitivity of the magnetic sensor 

used, as seen in Table 6, is 4 mG, which is the minimum detectable magnetic field for this 

specific sensor as recorded earlier. This information can then be used, in conjunction with (3.1.7) 

to determine the maximum detectable distance of the magnet, as seen in Figure 33. 

 

 
 

Figure 33 - Scaled plot of magnetic flux density versus distance for a permanent magnetic with surface 

remanent magnetization Br = 3.309 kG and a noise floor of 4 mG 

 

 

Using this sensor, with the given magnetic characteristics, there is a maximum detectable 

distance of approximately 3.9 ft. Obviously, this is the maximum detectable distance (worst case) 

based on data recorded in the laboratory. Since that scheme is not implemented in this research, a 

safe testing distance would be under 3 ft away from the sensor network. 

 

3.5 Design of Test Apparatus and Sensor Network 
 

Previous sections have discussed potential magnetic sources and magnetic flux sensors. For this 

experiment a 13.2 kG neodymium magnet (surface remanent = 3.309 kG) will be used as a 

source and single, z-axis magnetic sensors as receivers. In order to apply a location algorithm, as 

previously discussed, at least three sensors will need to be relatively close together (~6 in). The 

proximity of the sensors needs to be close enough to measure only a small change in the B-field 
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due to the magnetic source, and not span the entirety of the field. In order to accomplish this, 

sensor clusters will be constructed and will include three single-axis magnetic sensors. 

Additionally, this triad arrangement increases the sensor network coverage over that of a single 

three-axis magnetic sensor. These sensors, placed at a known spacing and orientation, are shown 

in Figure 34. 

 

 

Figure 34 - Sample sensor cluster layout 

 

 

Each magnetic sensor (▲) is able to contribute one measurement value at each location. The 

center of the cluster (■) then possesses the mean measurement value and surface normal 

direction computed by the individual sensors. Because the system is calculating three-

dimensional position, and possibly velocity, at least 2 sensor clusters (6 sensors) need to be 

located within the minimum detectable distance of the magnetic source. To more easily simplify 

calculations, uniformly spaced sensor clusters were chosen. The spacing between all clusters will 

initially be 1 ft from center-to-center of each cluster, and adjusted as necessary. 

 

This sensor network has two purposes. The first is to determine the position of the magnetic 

source. The second, although not pursued in this document or implemented in this experiment, is 

to determine the ambient magnetic noise. As previously discussed, passive sensor networks lack 

the ability to have the sensing element turn on and off, making the detection of ambient noise 

more complicated. To account for this measurement, this system will take advantage of the fact 

that the projectile is moving, and assumes that the projectile constantly moves around the 
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detection field. That being the case, this sensor network will have two zones, the projectile zone 

and the noise zone. This concept is illustrated in Figure 35, below. 

 

  

Figure 35 - Zones of sensor network (using centers of clusters) 

 

 

This illustration assumes that the magnetic source is at an orientation of θ = 0° or 180°. If the 

source was in any other orientation, the projectile zone would be elliptical. Additionally, the 

circular/elliptical projectile zone assumes a uniform magnetic noise floor.  

 

In order to accomplish both of these tasks, an adequately sized test apparatus is needed to 

measure both the position of the source while inside the detection distance and to measure the 

magnetic noise when outside of the detection distance. The horizontal surface of the 

experimental apparatus will be outfitted with single axis magnetic sensor clusters discussed in 

the previous section. The centers of the sensor clusters are to be uniformly spaced to simplify the 

position calculations to be performed, and will be used to collect information about the magnetic 

source. This information will be fed into a data acquisition system that will record the 

information and calculate the three-dimensional position and orientation. Calculations and 

methodology will be discussed further in the next section.  

 

 

 

Projectile Zone Noise Zone 

Source 
Magnetic sensor  

cluster (center) 
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3.6 Algorithm for Determining 3D Position and Orientation  
 

 

In this section, methods for determining the three-dimensional position and orientation will be 

examined. Initially, two dimensional positioning is explored by investigating a projection from 

three-dimensional space, initially with an ideal magnetic source with θ = 0°. Then orientation, 

both rotation and elevation, are introduced, and implemented on the original position algorithm. 

Finally, the z-axis position component is addressed. Tracking and estimation is also applied as a 

tool to predict the future position.  

 

To test the validity of this research, that a single axis sensor network can locate and track a 

permanent magnetic source, a simulation is constructed. This simulation uses the theory 

discussed and statistical analysis to describe the position and orientation of a three-dimensional 

source. A model depicting magnetic field strength and magnetic field direction are implemented. 

Since, at a distance greater than the diameter, a disk magnet closely resembles a magnetic dipole, 

the equation (3.1.7), duplicated here, was used to determine the magnetic flux density (in the z-

direction), assuming the magnet is at the origin. 

 

             

 
   

 
 
                                         

           
 

 
      

           
          

  

(3.6.1) 

 

where Bz is the z-axis component of B,    
 is the surface remanent magnetization 

in the z-direction, x, y, and z are positions in three-dimensional space of the field 

point, θ is elevation, φ is rotation about the z-axis, and µ0 is the free space 

permeability 

 

 

Using (3.6.1) and an x, y range of -2 ft to 2 ft, at z = 1 ft, a magnetic magnetization of 3.309 kG, 

and assuming no B-field contribution from the Earth or ambient noise and the magnet is flat (θ = 

0°), the following magnetic flux density of an ideal magnetic source can be seen in Figure 36. 

 



50 

 

 

Figure 36 - Magnetic flux density (z-direction) for ideal magnetic dipole located at the center of the sensor 

network (θ = 0°) 12 inches vertically away from the sensor  

 

 

In order to implement the algorithm previously discussed, vectors normal to the surface of the 

magnetic volume must be identified. In this application, the surface normal vector is calculated 

via a three point "patch" on the surface of the volume. A custom algorithm uses a set of n patches 

(n ≥ 2) from the magnetic model. A sample of the output of this code (n = 4, 12 sensors) can be 

seen in Figure 37 below. Each point ( ) on the plot represents a cluster of magnetic sensors as 

shown in Figure 34. 

 

 
Figure 37 - Patches (n = 4, 12 sensors) selected from magnetic volume 
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In this sample, four surface patches have been extracted from the ideal magnetic model. Using 

the average of the points and the cross product formulas below, the center of the patch and the 

normal vector to the surface through the center of the patch can be determined.  

 

Given a set Patch is generated by the subset of the positions of three individual sensors at 

coordinates S1, S2, and S3: 

                   
 

                    

                    and 

                    

(3.6.2) 

 

where S1, S2, and S3 are the positions of each magnetic sensor in Patch, and Sx, Sy, 

and Sz are the three-dimensional coordinates of each position. 

 

 

Patch center and surface normal can be described by: 

 

             
 

 
                                     , and (3.6.3) 

 

                             , (3.6.4) 

 
and the same can be defined for the remaining patches. 

 

 

Using vectors defined by the center of these patches and the surface normal through the centers, 

a geometric union, or intersect of these vectors is not possible in three-dimensional space. 

However, if this information is projected on a two-dimensional plane (x-y plane), the intersection 

of these vectors appears at the position of the magnetic source, as shown in Figure 38.  
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Figure 38 - Simulated plot of the intersection of Patch normal vectors in 3D (left) and 2D (right) space 

 

 

This two-dimensional intersection is due to the simple, uniform shape of the B-field. Patchcenter 

and Patchnormal can be described in two-dimensional space as: 

 

                      , and (3.6.5) 

                      (3.6.6) 

 

 

Given points P and surface normal directions n, the same type of analysis can be performed on 

the x-y plane to determine the coordinates (x,y) of the magnetic source. Using point P as a 

starting reference in this plane, a new vector (ray) can be defined in the direction of the two-

dimensional projection of the surface normal vector n. This can be seen in Figure 39. 

 

 
 

Figure 39 - Intersection of normal vectors in two-dimensional space on the x-y plane 
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In order to determine the intersection of the vectors, a two line, four point intersection matrix 

was implemented using Kramer's Rule. The following matrix [89] uses two points on the first 

vector and two points on the second vector to determine the two dimensional intersect point 

(x,y): 

 

                           , and (3.6.7) 

 

                             (3.6.8) 

 

 

which are four points which corresponds to a simultaneous solution of: 

 

 

   
       

               
   , and  

   
       

               
    (3.6.9) 

 

 

In order to obtain the maximum number of intersection points possible, a statistical    
 
  scheme 

was used. This allows for the use of 6 intersection points for n = 4 patches. The algorithm was 

adapted to determine   
 
  intersection points. The following plot, Figure 40, shows the x-y 

intersection of the patches. 

 

 
 

Figure 40 - (x,y) position for all combination of point-normal intersections 
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The intersection points are denoted as (*) and for n = 4 patches, there are six points. The mean of 

the intersection points is denoted by ( ).  To compensate for the phenomenon of statistical 

outliers, additional statistical analysis will be implemented to account for these points. The mean 

will be calculated and any data that is outside one standard deviation of the mean will be 

disregarded. The intersection with outliers removed is denoted by (). This statistical analysis 

will only be able to be implemented if there are three or more patches (or at least two intersection 

points). These coordinates along with the z off-set (initially zero), a final three-dimensional 

position can be offered. 

 

The solution presented thus far assumes that the orientation is always aligned on the z-plane (θ = 

0). In general, this is not the case and the algorithm must be adapted to account for non-zero 

orientations. One method to determine elevation is to look at the maximum and minimum sensor 

values. We have seen that each magnetic orientation produces a unique magnetic field 

component Bz (Figure 15 - Figure 24), so there should be a function that describe this 

orientation. Using equation (3.1.7), the ratio of the maximum sensor value to the minimum value 

across the entire network was obtained for 0° ≤ θ ≤ 90°. The results were fitted empirically to an 

exponential curve with a goodness-of-fit of 99.84%. The results can be seen in Figure 41 and 

described by (3.6.10). 

 

 

Figure 41 - Plot of elevation angle vs. ratio of simulated sensor values (max/min) for 12 ≤ z ≤ 48 in 
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                  (3.6.10) 

 

where Sensormax is the maximum sensor value in the network, Sensormin is the 

minimum sensor value in the network, an θ is the angle of elevation from the x-y 

plane. 

 

 

Given (3.6.10), and two sensor values (maximum and minimum), and expression for the 

elevation of the magnetic source can be written as: 

 

                                      (3.6.11) 

 

 

Although a more complex peak finding algorithm could be used, this method was chosen for 

simplicity, and a direct relation to the sensor outputs. 

 

Likewise, the angle of rotation, φ, can be determined by the location of the maximum sensor 

value and the minimum sensor value. A dense sensor network was created, Figure 42, with -2 ≤ 

x, y ≤ 2 ft and a linear sensor spacing of 0.1 inches, where the source is rotating about the origin. 

Using the maximum and minimum sensor value locations as a reference, angle of rotation, φ, can 

be determined by the following equation: 

 

        
          

           

          
           

   (3.6.12) 

 

where Sensormax is the maximum sensor value in the network (with x and y 

components) and Sensormin is the minimum sensor value in the network (with x 

and y components). 
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Figure 42 - Plot of simulated rotation angle vs. sensor position 

 

 

Figure 42 shows the rotation angle, φ, with respect to all sensor positions. φ uses the coordinate 

systems developed in Section 3.1, and the position of the maximum value sensor as a reference. 

The resolution of this angle will depend fully on the number and position of sensors in the 

network. As the number of sensors in the network decrease, resolution for φ will grow. 

 

 

Once the most likely θ and φ are determined, they can then be used in conjunction with the x, y 

coordinates to determine the z-axis position. Using the same generated sensor network, and the 

model of an ideal, on-axis dipole, the following plot was created to show the equivalent Br for a 

magnet rotated by 0° ≤ θ ≤ 90°. The express for Figure 43 can be seen in (3.6.13). Because of the 

complexity of the analytical expression for the magnetic B-field, this was simplified using a 

quadratic model with a goodness-of-fit of 99.57% over the range from 0° ≤ θ ≤ 90°. 
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Figure 43 - Plot of θ vs. Equivalent Br in the z-axis based on maximum sensor value 

 

   
                        (3.6.13) 

 

Given the model for an ideal, on axis dipole, the z component of position can be determined 

based on the elevation, θ, and the maximum sensor value. This simplification can be exploited 

because of the position of the magnetic sensors. As the sensor network becomes sparser, error 

will be introduced into this approximation and a more complex model must be used. (3.6.13) can 

be used in conjunction with (3.6.14), an equation for an on-axis magnetic sensor measurement, to 

determine the on-axis distance away from the magnetic sensor, as seen in (3.6.15). 

  

           
   

  
  (3.6.14) 

 

    
   

         

 

  
                     

         

 

  (3.6.15) 

 

where Sensormax is the maximum sensor value in the network,  θ is the elevation, 

and Brz is the maximum on axis B-field generated by rotation the magnet. 
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The initial method for determining position assumed no elevation of the magnetic source (θ = 

0°). Since an elevation and rotation component now exists, the x-y position must be modified. As 

the magnetic source is rotated the position of the maximum and minimum sensor points begin to 

collapse in on themselves, and an offset correction must be provided. Note that during operation, 

the magnetic source can be as close as 12 inches to the sensor network, Figure 44, shows a model 

for an offset based on the output of the proposed solver algorithm for 12, 24, 36, and 48 inches. 

The data in this plot was generated by a radius of 10 inches; however, the process would be the 

same for any rotating magnetic source. 

 

 

Figure 44 - Radial offset percentage for elevated magnet (z = 12, 24, 36, and 48 inches) 

 

 

These lines can be collapsed to a single expression (3.6.16) where percent radial offset can be 

described as a function of both the angle of elevation (θ, linear) and approximate z-axis position 

(z, quadratic) with a goodness-of-fit of 99.22% for 12 ≤ z ≤ 48 inches, 0° ≤ θ ≤ 45° and 

additional elevations in Figure 44. 

 

                                         
 

  
 

 

        
 

  
         

 

(3.6.16) 

 

And the position (x,y) can be modified from the θ = 0° elevation to the actual orientation of the 

magnetic source via equations (3.6.17 and (3.6.18). 
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(3.6.17) 

 

                                            

 

(3.6.18) 

 

By using the methods in this section, we have determined the three dimensional position (x, y, z) 

and orientation (θ and φ) based sole from the geometry of the B-field and the outputs of an array 

of single axis (z-axis) magnetic sensors. 

 

3.7 Position Estimation and Error Reduction 
 

 

It may become necessary to use a position estimation technique to aid in the determination of the 

source position (to assist in either position calculation or to address constraints in real-time 

processing), especially as interference from magnetic noise increases. One form of error 

reduction has been built into this algorithm. The method implemented uses a simple statistical 

analysis to remove major outliers. The outliers in this simulation will most likely be due to 

ambient and environmental noise.  

 

Another error reduction method that can easily be implemented into this tracking system is 

filtering. One such algorithm seen in the previous section, Kalman filtering, uses a kinetic model 

to aide in position prediction. A three-dimensional, six input (position and velocity) was 

developed for this novel system to better approximate the object's position, and to show that a 

basic filter is suitable in this application. 

 

As for developing the filter, the state transition model, control model, and other inputs are based 

upon the motion equations governing the system. For an object moving in free space with only 

the effect of gravity, discrete kinematic equations can be described as: 
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     , and (3.7.1) 

            , (3.7.2) 

 

where X is position, V is velocity, A is acceleration, and ∆t is the time step 

between each iteration, k. 

 

 

Vector equations for position, velocity, and acceleration are expanded such that             , 

               , and                 and the following state-space model can be formed. 

 

 
    

    
  

 
 
 
 
 
 
    

    

    

     

     

      
 
 
 
 
 

 

 
 
 
 
 
 
       
       
       
      
      
       

 
 
 
 
 

 
 
 
 
 
 
  

  

  

   
   
    

 
 
 
 
 

 

 
 
 
 
 
 
 

 
   

 
 

 
 

 
   

 

 
 

 

 
   

  
 
 

 
  
 

 
 
   

 
 
 
 
 

 

   
   
   

  

 

(3.7.3) 

 

Based on the Kalman filtering algorithm, the following implementation can be used based on 

Newtonian physics. 

 

                  , and (3.7.4) 

          , (3.7.5) 

 

where Ak is the state transition model, Bk is the acceleration input matrix, Hk is the 

model output matrix, Zk is the true measurement, wk is the process noise, and νk is 

the measurement noise. 

 

 

Because    and   are constants based on kinematic models, and will not change during 

operation, simplifications of        and        can be applied. Additionally, calculations 

will assume equal time steps per iteration, based on the sampling frequency (∆t = 1/fs). A 

simplistic model for the process noise,   , can then be introduced based on the model's 

acceleration inputs and variance. 
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  , (3.7.6) 

 

where   
  is the process noise variance of the position and    

  is the process 

noise variance of the velocity, in x, y, z, respectively. 

 

 

Note, this is the most basic model for process noise. It includes no coupling between 

components, or even between positions and velocities of the same component. Although a more 

complex model can and should be created, the output of the system will show that even this very 

simplistic model will increase the effectiveness of the estimation algorithm. The process noise 

variance of the position and velocity can be modeled [61] (for a simplistic case) based on the 

maximum acceleration in the system, where 

 

  
    

    
  

         

 
 (3.7.7) 

   
     

     
         (3.7.8) 

 

The output matrix, based both on position and velocity states, can be defined as: 

 

                    ,  (3.7.9) 

 

where the first set of three values are for x, y, z position and the second set are for 

Vx, Vy, Vz. 

 

The most simplistic covariance of measurement noise, based solely on uncoupled variances of 

position and velocities (like the process noise) and on the accuracy and repeatability of the 

sensor used, can be defined as: 

  

           
     

     
      

      
      

  , (3.7.10) 

 

where   
  is the measurement noise variance of the position and    

  is the 

measurement noise variance of the velocity, in x, y, z, respectively. 
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       ,        , and        (matrices are constant) can be applied for this simplified case. 

The Kalman filtering algorithm also requires a set of initial states for the state transition model as 

well as for the estimate covariance. These values are dependent upon whether the initial states 

are known (measurements are trusted) or unknown (model is trusted).  

 

Initial states based from unknown position and velocity can assume a position at the origin. 

 
   

    

  

 
 
 
 
 
 
 
   

   

   
    

    

     
 
 
 
 
 
 

      
     

 
 
 
 
 
 
 
 
 
  

  

   
 
 
 
 
 

 (3.7.11) 

 

Whereas initial states based from known position and velocity can assume the actual position and 

velocity: 

 
   

    

  

 
 
 
 
 
 
 
   

   

   
    

    

     
 
 
 
 
 
 

      
     

 
 
 
 
 
 
  

  

  

   
   
    

 
 
 
 
 

 (3.7.12) 

 

Initial estimate covariance based on known position and velocity yields: 

     

 
 
 
 
 
 
      
      
      
      
      
       

 
 
 
 
 

   (3.7.13) 

 

 

This estimate covariance matrix assumes that there is a small amount of measurement noise 

(and/or ambient noise, or other errors) and that the measurement values should be "trusted" more 

than the estimator "values".  
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Initial estimate covariance based on unknown position and velocity can be assumed as: 

 

     

 
 
 
 
 
 
       
       

       
        
        

         
 
 
 
 
 

, (3.7.14) 

 

where                            is suitably larger than the states of X and V. 

 

 

This estimate covariance matrix assumes that there is a larger amount of measurement noise 

(and/or ambient noise, or other errors) and that the model should be "trusted" more than the 

measurements. Both matrices will evolve with the estimator over time. 

 

A tracker-observer system can then be developed using this algorithm. One real-world case 

examined is that of projectile motion. In this case, a projectile is moving in free-space with only 

the force of gravity acting upon it. In more complicated cases, the motion equations presented 

here will need to be modified to account for friction or other influential forces (such as 

aerodynamic drag). 

 

In an example of this model, the projectile travels 0.25 seconds with initial velocity of 120 

inches/sec until it is deflected 90° and continues to travel in a new projectile motion for 0.25 

seconds with a new initial velocity of 60 inches/sec. Simulation used a process noise based on 

amax = 100g and a measurements noise   
            ft2

, suggested by [90] as an appropriate 

estimate for the HMC 1021z magnetometer, as a with a sampling frequency of 1 kHz. The results 

can be seen in Figure 45 and Figure 46. 
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Figure 45 - Path of projectile with and without AWGN and with applied Kalman filter 

 

 
Figure 46 - Percent error of Kalman filter and smoothed Kalman filter in free-space 

 

 

Figure 46 shows the convergence of a solution for the initial motion (between 0 and 0.25 

seconds) as well as the second motion (between 0.25 and 0.5 sec). The first motion converges 

with error under 5% within 0.02 second (18 iterations) and the second within 0.01 seconds (9 

iterations) and both eventually settle below 0.1% error over the length of the simulation, with 
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minimal initial overshoot. This figure also shows the error smoothed with a moving average 

filter (n = 10). 

 

By using a Kalman filter, with an initial position estimation, based on a kinematic model, noisy 

measurement data can be used, as shown, to predict the position and velocity of a projectile with 

minimal error. Using this algorithm or a similar one in conjunction with the magnetic tracking 

algorithm proposed earlier, a system can be developed to track a magnetic source moving in 

three-dimensional space. 

 

3.8 Data Acquisition System and Specifications 
 

 

The three dimensional position calculations will need to be calculated in real-time, or near real 

time. Because the speed of the projectile will affect the calculated position, it is important to 

select hardware that is able to acquire data fast enough. The following, calculated with simple 

kinematic motion, is a table of sampling frequencies required to achieve centimeter and 

millimeter resolution travel at various speeds, assuming that this sampling frequency corresponds 

to the operational output frequencies of the magnetic sensor circuit (magnetometer, amplifier, 

etc.). Additional speeds and frequencies can easily be determined in a similar manner. 

 
Table 7 - Sampling frequencies for 0.5" and 0.1" resolutions 

 

Speed 
(mph) 

Speed 
(in/sec) 

Frequency for 0.5" 
resolution (Hz) 

Frequency for 0.1" 
resolution (Hz) 

1 17.6 35.2 176 

5 88 176 880 

10 176 352 1760 

15 264 528 2640 

20 352 704 3520 

25 440 880 4400 

50 880 1760 8800 

100 1760 3520 17600 
 

 

Data acquisition (DAQ) systems commonly have sampling frequencies up to 50 kHz for most of 

the commercial, off-the-shelf units. The range, in conjunction with a moderately fast personal 
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computer, should easily calculate the position of the magnetic source at position (x,y,z) and 

orientation with approximately centimeter accuracy in the three-dimensional positioning and 

using the algorithm discussed previously. Better accuracy can be achieved in the system, but at 

the cost of the sample rate and data acquisition system. The sampling frequency can be adjusted, 

as needed, to accommodate processing time after motion and noise equations are evaluated 

experimentally. 

 

The data acquisition system must also be able to accept all of the inputs necessary to calculate 

the three-dimensional position. The layout on the sensor network in the previous section suggests 

24, 1- or 2-axis magnetic sensors will be used, each requiring its own differential input. As the 

size of the sensor network grows or shrinks, the number of required inputs would as well. If 

possible, a data acquisition system capable of recording all sensors simultaneously would be 

ideal. Given these requirements, several systems were investigated. One of the possible solutions 

specifications [91] is shown in Table 8 below. 

 

Table 8 - Data acquisition system specifications 

 

Description Value 

Number of analog inputs (single ended) 80 

Number of analog inputs (differential) 40 

Number of analog outputs 2 

Number of digital inputs and outputs 24 

Sampling frequency 250,000 samples/sec 

Resolution 16 bit 

 

 

This data acquisition systems allows for 40 magnetic sensors (differential input) to be used 

separately, or a maximum of 13 sensor clusters. This would allow for a maximum grid 

acquisition rate of 6.4 kHz, and a minimum sensor resolution of 183 µG over the full scale of the 

sensor (±6 G). Additionally, multiple DAQ systems (ideally with identical sampling rates and 

resolutions) could be used to achieve the required number of sensor inputs. A block diagram of 

this system, including the magnetic sensors, signal conditioning, pre/post-processing, data 

acquisition, and interconnects, can be seen in Figure 47. 
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Figure 47 - Block diagrams of system with single acquisition system 

 

 

In order to increase the maximum detection rate of the sensor network, additional data 

acquisition systems (A/D converters) can be used simultaneously. It is possible that each of the 

sensor clusters can have its own acquisition hardware, and the results can be polled to the 

processing unit at the same time. Microprocessors located on each sensor cluster can be used for 

this job. This allows for 40 possible sensor clusters, or 120 magnetic sensors. A block diagram of 

this method can be seen in Figure 48. However, this increase in data collection would be at the 

cost of additional and potentially expensive hardware that would be required for each sensor 

cluster, and was not further investigated in this research. 
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Figure 48 - Block diagrams of system with multiple pre-processors 

 

 

Additionally, in order to increase the minimum resolution of the sensor, an acquisition system 

with a higher A/D resolution would also work. These systems come with a higher cost as well. 

The minimum detectable signal of the magnetic sensor noise is approximately 4 mG. The 

following chart, Table 9, shows the relation between minimum detectable signal and A/D 

resolution for a DAQ with an input range of ±5 V, a signal input range of 0-5 V, and a sensor 

sensitivity of 1 mV/mG, as discussed in the next chapter.  

 
Table 9 - A/D resolution versus minimum detectable sensor signal 

 

n-bit Resolution Min. Detectable Signal (mG) 

8 78.13 

10 19.53 

12 4.88 

14 1.22 

16 0.31 

18 0.08 

 

 

This suggests that for maximum sensor potential, at least a 14 bit A/D converter should be used, 

assuming that the minimum detectable signal can be reached with any experimental setup. Using 

a lesser resolution would result in a more accurate determination of not only position, but 

magnetic noise as well.   
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Chapter 4 – Experimental Approach and Design 
 

 

Chapter 3 has outlined possibilities for an experimental apparatus—including the benefits and 

limitations of certain magnetic materials and their geometry, specifications of magnetic sensors, 

and possible configurations for sensor networks. Additionally, a method for determining position 

and orientation of a magnetic signature as well as a potential tracking and filtering algorithm has 

been proposed and evaluated under ideal circumstances. This chapter will describe the 

specification of the selected system components for the experimental apparatus, including 

magnetic sensors, the design of the experimental sensor network, and data acquisition hardware.  

 

4.1 Magnetic Sensor and Support Circuitry 
 

The basis of the magnetic tracking network is its single axis magnetic sensors. For this network, 

the Honeywell HMC 1021z  [87] magnetic sensor was chosen based on time and cost constraints. 

This sensor is housed in an 8-PIN SIP package with the magnetically sensitive axis pointing up. 

Design characteristics are listed in Table 10. 

 

 
Table 10 - HMC 1021z magnetic sensor design characteristics 

 

Characteristic Typical Value 

Supply 5 VDC 

Field Range ±6 G 

Disturbing Field 20 G 

Max Expose Field 10 kG 

Sensitivity 1.0 mV/VE/G 

Resolution 85 µG 

Bandwidth DC to 5 MHz 
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In order to detect the magnetic field, support circuitry was needed. Because there is no 

amplification in the magnetic sensor, an amplifying circuit needed to be added. This sensor also 

has the ability to degauss itself if magnetically saturated; note that support circuitry for this 

sensor is also needed, specifically for signal amplification. A simple block diagram of the circuit 

used is provided below. 

 

 

Figure 49 - Block diagram of magnetic sensor and support circuitry 

 

 

The HMC1021z is a magnetoresistive sensor [87] that is comprised of a set of magnetically-

variable resistors in a Wheatstone bridge configuration. The output of these sensors (mV) can be 

related to the magnetic field input (Oe) by the following manufacture plot, Figure 50 [87]. 

 

 

Figure 50 - Sensor output vs. magnetic field input for HMC1021z [87] 
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The following derivation relates the magnetic field strength input (in Oe) to the sensor output (in 

mV) for the linear portion between ± 10 Oe: 

 

               (4.1.1) 

 

where B is the magnetic flux density in G, H is the magnetic field strength in Oe, 

and µr is relative permeability (µr = 1.05 for Neodymium). 

 

 

   
 

    
 (4.1.2) 

 

From Figure 50, 

                 , and (4.1.3) 

 

                   (4.1.4) 

 

where V is the sensor output in mV. 

 

 

(4.1.3) describes the relationship between the H-field and the sensor output for -10 Oe < H < 10 

Oe, and (4.1.4) describes the relationship between the B-field and the sensor output for -10.5 G < 

B < 10.5 G, assuming a linear relationship over the domain. The output the sensor network will 

be -45.17 < V < 50.4 mV, and only valid in the specified field range. Note that 10 G corresponds 

to a distance of approximately 0.15 ft (1.8 inches) directly above the magnetic sensor for a 3.309 

kG magnet, and will need to be accounted for in the design of the experimental apparatus.  

 

The output of the magnetoresistive sensor will require amplification to take advantage of the 

DAQ. For this, a differential operational amplifier (op-amp) was used. A circuit diagram of a 

differential op-amp can be seen in Figure 51. 

 



72 

 

 

Figure 51 - Circuit diagram of differential operational amplifier 

 

 

Using nodal analysis, the output voltage of this op-amp can be described as a function of the 

input voltages, where 

 

      
         

         
 

  

      
         

  

      
         (4.1.5) 

 

where Vout is the output voltage, Vin(+) and Vin(-) are the input voltages, Rin(+) and 

Rin(-) are the input resistance, Rf is the output resistance, and Rg is the sink 

resistance. 

 

 

In simplistic design case of               and      , the output of the amplifier is given by  

 

      
  

   
                 (4.1.6) 

 

and the DC gain is given as: 

 

  
  

   
  (4.1.7) 

 

where G is the amplified DC gain. 
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         (4.1.5) 

 

where Vout is the output voltage, Vin(+) and Vin(-) are the input voltages, Rin(+) and 

Rin(-) are the input resistance, Rf is the output resistance, Rg is the sink resistance, 

C is the output capacitance, and s is a complex variable (jw). 

 

 

Given design consideration of                      ,           , and      , the 

frequency response of the magnetic sensor and support circuitry over operating conditions is 

shown in the following figure.  

 

 
Figure 52 - Frequency response of single axis magnetic sensor and amplification, filtering circuitry 

  

 

The filtered, cut-off frequency of the feedback impedance this amplifier is given by (4.1.9), as 

shown in Figure 52 to be 160 Hz at -3 dB from DC. 

 

   
 

     
  (4.1.9) 

 

where fc is the cut-off frequency and C is the output capacitance. 
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This configuration has an op-amp circuit gain of 200, implementing a low-pass filter with cut-off 

frequency of approximately 160 Hz. These design criteria (C, Rf) can easily be adjusted to 

accommodate any frequency response desired in future embodiments of this research. 

 

The HMC1021z also has the ability to degauss itself, if the magnetic sensor becomes saturated. 

In order to do this, a 0.5A current, pulsed at a duration of 2 µsec, is required—once in the 

positive and once in the negative directions (to clear both sides). A pair of complementary power 

MOSFETs, in totem configuration, is used to achieve this, as shown in Figure 53. The 

Honeywell suggested magnetic detection circuitry schematic [87], shown in Figure 53, was used. 

 

 
Figure 53 - Magnetic sensor circuit schematic [87] 

 

 

The circuit implemented here uses a 5 V excitation. The single-input supply sensor uses a simple 

voltage divider to center the output at 2.5 V to achieve signed measurements.  Given a sensitivity 

of 1.0 mV/VEXCITATION/G (typical), with VEXCITATION = 5 V and a gain of 200 (typical), the 
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apparent sensitivity becomes 1 V/G. This allows for magnetic measurements between ± 2.5 G. 

Using the magnetic source selected (3.309 kG), the minimum detectable distance is 0.3 ft (i.e. if 

the source is any closer it will saturate the magnetic sensor) once the Earth's magnetic field is 

taken into account.  

 

During operation, magnetic noise and transience from the Earth's magnetic field can play a large 

role in the effectiveness of a DC magnetic sensor network. This noise must be accounted for in 

the maximum detectable distance of the sensor. Figure 54 illustrates a 30 minute data sample of 

transient Earth field. This data shows mean magnetic noise of 269 mG, with a mean variation of 

approximately 4 mG, with  a maximum of 6.6 mG over the time period examined. Note, that this 

contains a combination of magnetic source signal and magnetic noise, both intrinsic and 

extrinsic. 

 

 

Figure 54 - Transient noise from magnetic sensor and support circuitry 

 

 

Additionally, operational noise can be introduced based on sampling frequency, using 0.1 Hz as 

an approximation of a DC magnetic source, Figure 55 approximates a magnetic noise density of 

800 nV/√Hz, or 160 µG/√Hz [87] (given a typical sensitivity of 5.0 mV/G). This is much lower 

than the other systematic noises presented here. 
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Figure 55 - Magnetic sensor (HMC 1021z) noise vs. frequency[87] 

 

 

The manufacturer's suggested schematic, and the parts included, was used to build twelve single-

sided printed circuit boards. A detailed list of parts and their measured values is included in 

Appendix A. A PCB layout schematic is included in Appendix B. Input / Output terminals on the 

PCB are available to (1) supply power, (2) retrieve sensor data after it has been amplified and 

filtered, and (3) allow the user or computer to set and reset the sensor's internal saturation 

circuitry. A sample of the PCB made is shown in Figure 56. 

 

 
Figure 56 - Sample PCB including magnetic sensor and support circuitry 
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4.2 Magnetic Sensor Network Layout 
 

The magnetic sensor network is composed clusters of twelve magnetic sensors. Each sensor 

cluster is affixed to a 1 x 1 ft Plexiglas board. The board is referenced from the center, and each 

individual sensor is positioned on the board (Figure 57) so its exact position is known. The exact 

positions of the individual sensors are used to calculate the average value of the magnetic field 

and the magnetic surface normal vector used for magnetic source position computation. 

 

 
Figure 57 - Sensor cluster - Positions of magnetic sensors 

 

 

For the purposes of testing, and simplicity, all sensors and sensor clusters will be coplanar. Each 

of the four sensor clusters are arranged on a larger platform. This platform will allow the centers 

of the sensor clusters to be spaced one, two, and three feet apart from one another. The density 

and scalability of this design will be simulated in the following sections. Figure 58 shows a 

simulation of one possible configuration for the magnetic sensor network. The absolute position 

of all (12) sensors in the network can be found in Appendix C. 
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Figure 58 - Simulated sensor network with 12 sensors, 4 sensor clusters 

 

 

Although the initially proposed network uses only 4 uniformly spaced sensor clusters, this sensor 

network layout yields the potential for many more, non-uniformly spaced sensor clusters to be 

added. During initial testing, because of the distance between these clusters, poor quality of 

position calculation resulted.  For this reason, a modified sensor cluster design was created and 

tested. The clusters nearest to the magnetic source will then have the best signal to noise ratio, 

and relying on these alone will produce a higher quality position results. This augmented sensor 

network, shown in Figure 59, has (15) non-overlapping clusters, with the possibility of more 

overlapping sensor clusters.  
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Figure 59 - Simulated sensor network with 12 sensors, 15 sensor clusters 

 

 

This is the configuration that was used in the experimental sensor network. Figure 60, shows the 

actual magnetic sensor network. The absolute position of the center of all (15) clusters in the 

network can be found in Appendix D. 

 

 

Figure 60 - Experimental sensor network with 12 sensors 
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Using this sensor network configuration, in conjunction with the experimental and simulated 

data from the previous section, projections can made on the signal strength and number of 

sensors used to detect a magnetic source. The following simulations, based on a magnetic source 

of 3.309 kG and the above sensor network layout can be seen for a source one foot (Figure 61) 

and two feet (Figure 62) above the origin, plotted against the 4 mG average noise floor. 

 

 

Figure 61 - Sensor network response (dB) for magnetic source 1 ft above origin 

 

 

Where the magnetic flux density (signal) is represented in dB as: 

 

                   (4.2.1) 

 

 

Noise floor 



81 

 

 

Figure 62 - Sensor network response (dB) for magnetic source 2 ft above origin 

 

 

These figures indicate the signal response (in dB) from the interaction of each sensor with the 

magnetic source. For any position on the sensor network, there are between 7 and 9 magnetic 

sensors that are able to obtain measurements above 4 mG when the magnetic source is 1 ft above 

the center. Likewise, for any position on the sensor network, there are between 1 and 3 magnetic 

sensors that are able to obtain measurements above 4 mG when the magnetic source is 2 ft above 

the center. This second projection is why tracker-estimators with good initial position estimation 

are a good addition to this tracking algorithm. 

 

 

 

 

Noise floor 
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4.3 Data Acquisition System for a Magnetic Sensor Network 
 

The data acquisition hardware for the magnetic sensor network has multifaceted requirements 

including: required number of analog sensor inputs (12 differential), adequate sampling rate (> 

1kHz per sensor), and appropriate resolution (>14 bit). Due to cost constraints,  the single DAQ 

card proposed in previous sections is not feasible. Instead, two seemingly identical, 8 differential 

analog input, 16 bit DAQ cards were used (NI DAQCard-AI-16XE-50 [92] and NI PCI-6013 

[93]). The primary design characteristics are listed in Table 11.  

 

Table 11 - Data acquisition system specifications for NI DAQCard-AI-16XE-50 and NI PCI-6013 

 

Description Value 

Number of analog inputs (DIFF) 8 

Number of digital inputs and outputs 8 

Sampling frequency 200,000 samples/sec 

Resolution 16 bit 

DAQ Input Range -5 VDC to +5 VDC 

Signal Input Range 0 VDC to +5 VDC 

 

 

Changing the resolution of the DAQ system will alter the maximum detection distance of the 

sensor network. Previous calculations show that the maximum detectable range of a magnet with 

Br = 3.309 kG will be 9.05 ft for a magnetic sensor with a sensitivity of 85 µG [87] (on-axis, 

with no external noise) measured on-axis. Assuming that the external noise floor averages 4 mG, 

as shown with experimental data, the maximum detectable range of the sensor network then is 

reduced to approximately 3.9 ft (on-axis), once accounting for the steady-state Earth's magnetic 

field. Figure 63 shows a diagram of the experimental sensor network, including magnetic 

sensors, signal conditioning, data acquisitions, and processing unit. 
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Figure 63 - Block diagrams of experimental sensor network 

 

 

4.4 Experimental Testing Apparatus 
 

In order to test the validity of the tracking system, an experimental testing apparatus that is 

capable of manipulating both three-dimensional position and orientation was designed and built. 

To accomplish this, two testing apparatus were constructed, one for three-dimensional position 

and one for orientation. 

 

4.4.1 Rotational Experimental Testing Apparatus 

 

To verify that the system is successfully able to track the changes in orientation of a magnetic 

source, a rotational testing apparatus was designed. This apparatus spins a magnetic source with 

a radius of 10 inches around the center, 12 inches above the sensor network, as seen in Figure 64. 

This vertical distance ensures that the magnetic sensors will not saturate, given conditions stated 

in the previous section. 
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Figure 64 - Rotational testing apparatus 

 

 

The magnet is held in place at angles of θ = 0°, 15°, 30°, 45°, and 60° using slugs affixed to the 

rotating plate. This configuration allows for the sensor network to detect sources up to ±60° 

around the x-axis and around the y-axis. These slugs can be seen in Figure 65. 

 

 

Figure 65 - Magnetic slug holder 
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The platform is rotating at approximately 33 revolutions per minute (62.8 inches/rev or 34.56 

inches/sec), which can be used as an input to the Kalman tracking algorithm. Rotating at a 

constant velocity, data will be collected using the five angles stated, and compared to the 

theoretical. Because the magnetic field strength is weaker for a source at 90° above the sensor 

network, it is expected that the results of the higher angles (45° and 60°, and higher) will be 

much noisier than the smaller angles. This will be verified with experimental testing. 

 

4.4.2 Linear Experimental Testing Apparatus 

 

To verify that the system is able to track changes in three-dimensional space, a linear testing 

apparatus was designed. This apparatus allows the magnetic source to traverse the entire sensor 

network, accelerating under the force of gravity with friction loss, as seen in Figure 66. This 

apparatus is 5 feet in length, at an incline of 15° starting 2 feet  and ending 1 foot above the 

sensor network, and uses the same magnetic slug holders as the rotational apparatus, which will 

allow experimental testing to verify that as the magnetic source approaches 90°, the magnetic 

strength approaches zero. These dimensions ensure the sensors will be able to detect the 

magnetic source, as described in the previous section. 

 

 

Figure 66 - Linear testing apparatus 
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Initial testing will limit the linear track to the 2 by 2 ft section above the sensor network, which 

can be expanded to cover the entire span track (4 ft). Because the magnetic strength is inversely 

proportional to distance cubed, weaker strengths will be recorded at the start of the tracking. 

 

The combination of the rotational and linear testing apparatuses will validate the effectiveness of 

tracking system in all three dimensions of position and two degrees of orientation of the 

magnetic source. 
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Chapter 5 – Results 
 

 

The previous chapter has outlined an experimental approach and design, including two 

experimental testing apparatuses. This chapter will discuss sensor network calibration as well as 

the experimental results for both the rotational and linear scenarios. 

 

5.1  Sensor Network Calibration 
 

In order to collect meaningful data, the sensor network had to be: (1) calibrated to achieve 

uniform gains across all magnetic sensors (hardware level), (2) tuned to report identical results at 

a fixed distance (software level), and (3) able to compensate for the offset due to the Earth's 

magnetic field.  

 

The hardware calibration was initially performed using components for the amplifier circuitry 

(Appendix A). The magnetic sensor had an initial output range of 5 mV/G and the amplifier 

circuitry that was added supplied a hardware gain of approximately 200. This value varied 

between 200.72 and 206.90 due to the variance in the components used (Appendix A). Each 

sensor was normalized, compensating the variance in resistances. 

 

A baseline reading was taken before every experiment. Sensors are able to detect positive and 

negative B-fields with outputs between 0 and 5 volts and an ideal zero field reading of 2.5V. 

This calibration removed the mean magnetic field of the Earth, as well as the mean magnetic 

noise from the power supply and the motor for the rotational platform. 

 

This configuration only takes advantage of half of the DAQ input, essentially reducing it to a 15 

bit resolution device. These values were used to create an offset and force baseline readings back 

to 2.5 V. The cause of the initial deviations from 2.5 V was the tolerance of the components that 

had been used to build the magnetic sensor board, mainly the amplification circuitry. 
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A sensor calibration routine was used to tune the sensors to a specified value at a fixed distance. 

An eight-point calibration was performed on each sensor, at distances 6 to 13 inches (on axis) 

from the sensor. Pre- and post-calibration data can be seen in Figure 67 and Figure 68, and the 

remaining sensor calibration data can be seen in Appendix A (Calibration Gain). 

 

 

Figure 67 - Pre-calibration data 

 

 

 

Figure 68 - Post-calibration data 

 

 

Before calibration, the standard deviation was 163.5 mV (with amplifier gain) and 0.986 mV 

(output of sensor). After calibration, the standard deviation was 47.1 mV (with amplifier gain) 

and 0.325 mV (output of sensor). 
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5.2  Results of Rotational Testing 
 

Custom software was developed and used to analyze the data collected for the rotational case, 

including two-dimensional position and orientation. This data was sampled at 1 kHz for 1 

circular revolution. The output of the sensor network is shown in Figure 69 

 

 

Figure 69 - Output of magnetic sensors for rotating test apparatus (θ = 0°) 

  

 

From these plots, it can be seen that the magnetic source is moving in the proximity of each 

magnetic sensor, completing one rotation, traveling at approximately 33 revolutions per minute 

about a 10 inch radius (34.56 inches/sec), around the sensor network.  

 

In order to remove the effect of this non-uniform sensor network layout, stray ambient noise, and 

system power noise due to the power supply and rotation apparatus, a simulated plot of position 

was created using an ideal magnetic source traveling about the sensor network and was 

calculated using mean position while θ = 0°, 15°, 30°, 45° and 60° (Appendix G), shown in 
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Figure 70. This dataset was used as a baseline for systematic error, which was removed from all 

position calculations.  

 

 

Figure 70 - Simulated position for rotating test apparatus using ideal magnetic source as a baseline for 

systematic error 

 

 

A plot of the calculated radial position is shown in Figure 71. These positions are calculated 

using the method discussed in Chapter 3. In the figure, the black points are the theoretical 

(actual) position of the magnet, rotating in a circle with a radius of 10 inches. The blue points are 

the calculated position based on the position algorithm. The red points are the estimated position 

of the magnetic source based on the calculated points and the Kalman estimation algorithm with 

a variance of 0.01 inches
2
. Figure 72 shows a three-dimensional plot of the same information. 

The initial position for the Kalman estimator is at the origin, (0,0,0) inches. 
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Figure 71 - Radial position for rotating test apparatus (θ = 0°, 15 clusters) 

 

 

Figure 72 - Position for rotating test apparatus (θ = 0°, 15 clusters) 
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Figure 73 shows a plot of the calculated angles (elevation and rotation). The red line is the 

calculated θ (elevation above the x-y plane), which is also the actual angle of the magnetic 

source in its holder. The blue line is the calculated φ (rotation about the z-axis) for one revolution 

around the sensor network. The dashed lines show the actual value of the corresponding color. 

  

 
 

Figure 73 - Orientation for rotating test apparatus (θ = 0°, 15 clusters) 

 

 

Figure 74 shows a plot of percent error for the simulation. The blue line shows percent error in 

the radial direction, and the green line shows percent error in the z-direction. The red line shows 

the overall percent error (both radial and z-directions). The dashed lines show an average value 

of the corresponding color, between 0% to 30% error.  

 

 

Figure 74 - Percent error for rotating test apparatus (source angle = 0°, 15 clusters) 
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Using the same method, additional sets of experimental data were collected and analyzed with 

the magnetic source at angles of 15°, 30°, 45°, and 60° (Appendix G). Additional data and 

solution sets are in Appendix G. Using the experimental data collected, a summary of results can 

be seen in Table 12 (position) and Table 13 (orientation). 

 

 
Table 12 - Summary of results for rotating test apparatus (position) 

 
 Position 

Magnetic 

Source Angle 

Mean Radial 

Error (%) 

Mean Z 

Error (%) 

Mean Overall 

Error (%) 

Max Overall 

Error (%) 

0° 3.54 0.19 1.55 4.90 

15° 2.45 0.19 1.10 2.78 

30° 2.41 0.19 1.08 3.18 

45° 3.20 0.19 1.40 4.63 

60° 5.65 0.19 2.41 6.37 

75° † 5.61 0.19 2.38 6.40 

90° † 4.19 0.19 1.79 5.34 
 
†
 75° and 90° were not experimentally tested, these are simulated results. 

 

 

Overall error is reported at less than 2% on average with 6.4% for the worst case. The majority 

of this error can be attributed to the systematic (Figure 70) and environmental magnetic noise. 

Additional error can be attributed to the number and spacing of the magnetic sensors. The layout 

used for this experimental was a first attempt, and is not optimized.  

 

Table 13 - Summary of results for rotating test apparatus 

 
 Orientation 

Magnetic 

Source Angle 

Mean Difference 

(Rotation, °) 

Mean Difference 

(Elevation, °) 

0° 13.50 2.19 

15° 13.79 18.72 

30° 13.85 22.65 

45° 13.92 23.16 

60° 13.76 27.95 

 

 

Because the models for θ and φ were developed using a more dense sensor network (> 10 

sensors per ft
2
), estimates for those angles in a 12 sensor (3 sensors per ft

2
)  network was poor. 
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The average rotation angle was 13.5°, which is directly limited by the number and position of the 

sensors, as previously discussed. The average elevation angle performed poorly because, in this 

scenario, the magnetic source was never directly above a sensor for a period of time, which is 

what the model was based upon. A simulated case, containing 441 sensors (spaced every 0.5 inch 

across the sensor network, 27 sensors per ft
2
) in the same footprint, shows the operability of the 

model within a more dense sensor network. A plot of this layout can be seen in Figure 75, with 

simulated values for θ and φ included in Figure 76. Table 14 shows a summary of predicted 

elevation angles and differences from theoretical. 

 

 

Figure 75 - Simulated network with 441 uniformly spaced sensors (27 sensors per ft
2
) 

 

 

Figure 76 - θ and φ in simulated network with 441 uniformly spaced sensors (27 sensors per ft
2
) 
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Table 14 - Theoretical vs. simulated θ for network with 27 sensors per ft
2
 

 
Theoretical (Actual) θ Calculated θ Difference in θ 

0° -1.84° 1.84° 

15° 14.05° 0.95° 

30° 31.40° 1.40° 

45° 46.58° 1.58° 

60° 61.32° 1.32° 

75° 75.20° 0.20° 

90° 89.21° 0.79° 

 

 

It is apparent from this data that this model responds much better to networks with a dense grid 

of sensors. Figure 77 shows a simulated plot of sensor network density vs. percent error (θ, φ, 

and z) for a sensor network 4 ft by 4 ft,  θ = 30°, and a sample size of 500. 

 

 

Figure 77 - Simulated plot of sensor network density vs. percent error (θ, φ, and z) for a 16 ft
2
 sensor network 

 

 

This scenario was created in regards to sample sizes > 100 samples and elevation angles between 

0° and 90°. This information can be used to plan a suitable sensor network layout for a future 

embodiment of this project. 
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5.3  Results of Linear Testing 
 

Custom software was developed and used to analyze the data collected for the linear case, only 

in three-dimensional space with a fixed orientation. This data was sampled at 1 kHz, or 

approximately 500 samples per pass. The output of the sensor network is shown in Figure 78, 

 

 

Figure 78 - Output of magnetic sensors for linear test apparatus (θ = 0°) 

 

 

From these plots, it can be seen that the magnetic source moving closer to magnetic sensors as 

the simulations progresses. Because the magnetic source is sliding down the test apparatus, the 

source is indeed getting close to the sensor network. 

 

In order to remove the effect of this non-uniform sensor network layout and other systematic 

noise, a simulated plot of position was created using an ideal magnetic source traveling about the 

sensor network, which was calculated using mean position while θ = 0°, 15°, 30°, and 45° 

(Appendix H), shown in Figure 79. This dataset was used as a baseline for systematic error and 

was removed from all position calculations. 
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Figure 79 - Simulated position for linear test apparatus using ideal magnetic source as a baseline for 

systematic error 

 

 

A plot of the calculated three-dimensional position is shown in Figure 80. These positions are 

also calculated using the theory discussed in Chapter 3. In the figure, the black points are the 

actual position of the magnet, starting two feet above, traversing, and ending one foot above the 

sensor network. The blue points are the calculated positions, and the red points are the estimated 

positions of the magnetic source based on the calculated points and the Kalman estimation 

algorithm. The initial position for the Kalman estimator is (0,12,24) in. 
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Figure 80 - Position for linear test apparatus (θ = 0°, 15 clusters) 

 

 

Figure 81 shows a plot of difference error for the simulation. The blue line shows the difference 

error in the x-axis, the green line shows the difference error in the y-axis, and the red line shows 

the difference error in the z-axis. The dashed lines show an average value of the corresponding 

color. The bottom plot shows the same information, but magnified between 0 to 5 inches for 

clarity. 

 

 

Figure 81 - Percent error for linear test apparatus (θ = 0°, 15 clusters) 
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Using the same method as the previous section, five sets of experimental data were collected and 

analyzed with the magnetic source at angles of 0°, 15°, 30°, and 45° running through the linear 

test apparatus. The first experimental data set was for the magnetic source at an angle of 0°, 

which is presented here. Additional data sets and plots for the linear test apparatus with other 

magnetic source angles is in Appendix H. Using the experimental data collected, a summary of 

the results can be seen in Table 12  

 

Table 15 - Summary of experimental results for linear test apparatus 

 
 Position 

Magnetic 

Source Angle 

Mean Z-Axis 

Error (%) 

Mean Overall 

Error (%) 

Mean Z-Axis 

Difference (in) 

Max Z-Axis 

Difference (in) 

0° 0.24 1.40 0.03 0.09 

15° 0.19 1.38 0.03 0.08 

30° 0.15 0.87 0.02 0.04 

45° 0.19 1.13 0.03 0.14 

 

 

Once systematic and calibration errors were removed, three dimensional positioning was 

calculated with little error. This would be expected because the magnetic sensors that were 

implemented were z-axis sensors. Examining the baseline (Figure 79), the use of a sensor 

network with only 12 sensors was a detriment to determining three-dimensional position, 

especially with large magnetic elevations. The mean difference was 0.51 inches and mean 

maximum difference was 1.37 inches. Using the same simulated case as before, containing 441 

uniformly spaced sensors (density of 27 sensors per ft
2
) in the same footprint, the results used to 

determine the z-axis position of a magnetic source. These simulated values can be seen in Table 

16, with an actual value of z = 12 inches. 

Table 16 - Theoretical vs. simulated z for network with 441 sensors (density of density of 27 sensors per ft
2
) 

 
θ (deg) Simulated z (inches) Difference in z (inches) 

0° 12.38 0.38 

15° 12.26 0.26 

30° 12.13 0.13 

45° 12.01 0.01 

60° 11.88 0.12 

75° 11.74 0.26 

90° 11.70 0.30 
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It is apparent from this data that this model responds much better to networks with a dense grid 

of sensors. This can be attributed to the fact that since there are more sensors, the magnetic 

source spends more time directly above them. This information, along with rotation and 

elevation angles, can also be used to plan a suitable sensor network layout for a future 

embodiment of this project. 

 

5.4  Summary of Results 
 

This research set out to show that is was possible to accurately track a permanent magnetic 

source, including three-dimensional position and orientation with a single-axis sensor network 

using B-field geometry. The two experimental test apparatuses developed here, one rotational 

apparatus to determine two-dimensional position and orientation, and one linear apparatus to 

determine three-dimensional position, were used to verify this hypothesis.  

 

The data collected using the rotation experiment has shown that position with a fixed height can 

be calculated within 6.4% percent error (worst case) using 12 magnetic sensors in a sensor 

network with area of 576 inches
2
 while averaging approximately 3.86% percent error (mean) 

during operation. Correcting factors for elevation and rotation were also developed and applied. 

These correction factors, derived for a dense sensor network, were limited operating on a 

network with only 12 sensors. Simulated results, though, using a dense sensor network show that 

θ can be determined with less than a 2° difference over the range of 0° ≤ θ ≤ 90°, with an average 

of 1.15°. These values will vary and can be optimized with the density of the sensor network. 

 

Data collected using the linear experiment has shown that three-dimensional position can be 

calculated within approximately 1.5% percent error with an established baseline, for the 

experimental conditions used. For the baseline, given the experimental setup used, the z-axis 

component can be determined within 1.7 inches with an average approximately 0.25 inches 

operation, when the magnetic source is at 45° or less, using the collected data. Once systematic 

and noise error are removed, the determined a z-axis position results in a 0.24% error (mean, 

1.40% max) and a maximum difference of 0.15 inches. 
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Because the baseline model for determining the z-axis position was on a dense sensor network, 

the results lagged behind expectation. Simulated results using a dense sensor network show that 

a z-axis position can be determined with less than a 0.4 inches difference from theoretical, over 

the range of 0° ≤ θ ≤ 90°, with an average of 0.20 inches. Again, these values can change 

significantly with the density of the magnetic sensor network. 

 

Additionally, this novel contribution leads to an overall system that can locate and track at 

computational speeds much faster than suggested iterative solvers. The computational times of 

the proposed location system are shown in Table 17. These results are based on the solution to 

the linear test case, with a sample size of 500. The iterative process used MATLAB's nonlinear, 

least squared solver with a tolerance of 1e-3 and the model in (4.2.7) with 5 sensors as an input 

and converged in 48.87 sec. This method converges in at most 6 iterations (given good initial 

conditions). These results show an increase in computational speed up to 1865% using the 

smallest number of clusters (5), and 274% increase using the number of clusters (15) as used in 

this experiment. 

 

Table 17 - Computation speeds of geometrical solver vs. MATLAB iterative solver 

 

No. of clusters 
Proposed system 

(sec) 

Speed increase 

(%) 

5 2.62 1865 

10 8.65 565 

15 17.82 274 
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Chapter 6 – Conclusion and Recommendations 
 

 

This document outlines a novel, three-dimensional magnetic tracking application. This chapter 

details conclusions drawn from the results of the previous chapter, as well as recommendations 

for continued work. 

 

6.1  Conclusion 
 

Presented here is a novel implementation of a "pure-DC" magnetic tracking method. The initial 

proposal was that a methodology could be developed that implements a single-axis magnetic 

sensor network to be used to determine three-dimensional position and orientation of a magnetic 

projectile. Results show that using the unique geometry of the B-field to calculate the position 

and orientation of a magnetic source is a viable option to track magnetic objects in three-

dimensional space.  

 

This contribution has shown that it is not necessary to gather multiple dimensions of magnetic 

sensor information to determine a magnet's position in free-space. It is possible to track and 

locate the three-dimensional position and orientation of a permanent magnetic source (with 

known magnetic flux geometry) with only a single-axis magnetic sensor network.  While this 

systems work well with three-dimensional tracking problems, it is also capable of two-

dimensional tracking with less computational effort. Using the approach outlined in this 

document, position and orientation can be described solely based on the location and B-field 

magnitude of each single-axis magnetic sensor. 

 

6.2  Recommendations 
 

Several recommendations could be suggested for future work. Having the ability to acquire 

sensor data with one system would greatly reduce the overhead of the processing unit (as 
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opposed to the two DAQ cards used in this project). For a commercial application, it would be 

recommended that a single DAQ with appropriate specifications be used. 

 

Additionally, it is recommended that an analysis of an optimal geometric shape, size, and 

locations of the magnetic sensors and sensor clusters be performed to reduce the calculation 

error. Using this experimentation as a baseline, it will be possible to scale this work, up or down, 

to satisfy a host of magnetic location and tracking applications, specifically those mentioned in 

this dissertation.  

 

While some parameters have not been completely investigated, a continued effort can be made 

to: 

 Examine the feasibility of using different magnetic sources (other than neodymium 

permanent magnetic disk) 

 Determine optimal sensor network layout (spacing and shape for specified source) for 

desired application. 

 Create a sensor network that can take advantage of recording information for both 

magnetic source position and ambient magnetic noise simultaneously. 

 Examine (micro and macro) scalability of a magnetic tracking system. 
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Appendix A – Magnetic Sensor Component Information 
 

AI_1 (NI DAQCard-AI-16XE-50) 
  

    

 
Sensor R200 R5K_1 R5K_2 R1M_2 

 HW 
Gain 

Calibration 
Gain AI 

 
1 198.7 4958 4884 999100 202.51 1.0524 <0,8> 

 
2 199.3 5005 4943 1001200 201.04 0.9651 <1,9> 

 
3 199.0 4957 4921 1002400 203.22 0.9740 <2,10> 

 
4 198.3 4999 4986 999600 200.96 0.9858 <5,13> 

 
5 198.9 4955 4880 1003500 203.52 0.9631 <6,14> 

 
6 199.3 4944 4924 1000300 203.33 0.9805 <7,15> 

 
                

AI_2 (NI PCI-6013)             

 
Sensor R200 R5K_1 R5K_2 R1M_2 

HW 
Gain 

Calibration 
Gain AI 

 
7 199.7 4941 4858 1000000 203.39 1.0817 <0,8> 

 
8 198.6 4949 4888 1002000 203.47 0.9522 <1,9> 

 
9 199.1 4936 4893 999000 203.39 0.9597 <2,10> 

 
10 198.5 5007 4959 1000000 200.72 0.9755 <5,13> 

 
11 199.0 4936 4993 1005000 204.61 0.9285 <6,14> 

 
12 198.8 4881 4916 1005000 206.90 0.9690 <7,15> 

 
                

 

*Note: Some labels (R200, R5K_1, R5K_2, and R1M_2) correspond to parts of PCB design 

shown in Appendix B. 
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Appendix B – Magnetic Sensor PCB Schematic 
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Appendix C – Absolute Positions of Magnetic Sensors 

 
Sensor Number X-Positions (in) Y-Position (in) 

#1 -10.4562 -5.3737 

#2 -2.5528 -3.1075 

#3 -5.4516 -10.4665 

#4 1.5438 -5.3737 

#5 9.4472 -3.1075 

#6 6.5484 -10.4665 

#7 -10.4562 6.6263 

#8 -2.5528 8.8925 

#9 -5.4516 1.5335 

#10 1.5438 6.6263 

#11 9.4472 8.8925 

#12 6.5484 1.5335 

 

*Note: All positions are relative to the center of the sensor network 
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Appendix D – Absolute Positions of Center of Sensor Clusters 

 
Cluster Number X-Positions (in) Y-Position (in) 

#1 -6.1535 5.6841 

#2 5.8465 5.6841 

#3 -6.1535 -6.3159 

#4 5.8465 -6.3159 

#5 -8.7880 0.9287 

#6 -6.1535 -2.3159 

#7 -2.1535 1.6841 

#8 -2.1535 5.6841 

#9 1.8465 1.6841 

#10 2.8127 8.1371 

#11 8.4809 2.4395 

#12 5.8465 -2.3159 

#13 0.8802 -8.7689 

#14 -2.1535 -6.3159 

#15 1.8465 -2.3159 

 

*Note: All positions are relative to the center of the sensor network 
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Appendix E – Frequency Response of Unfiltered and Filtered 
Magnetic Sensors 

 

NI DAQCard-AI-16XE-50, Sensors #1 - #3 

 
 

 

NI DAQCard-AI-16XE-50, Sensors #4 - #6 
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NI PCI-6013, Sensors #1 - #3 

 
 

 

NI PCI-6013, Sensors #4 - #6 
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Appendix F – Frequency Response of Power Supply 
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Appendix G – Experimental data for rotation apparatus    
 

 

Magnetic Source at 15° 

 

 
 

Figure 82 - Output of magnetic sensors for rotating test apparatus (θ = 15°) 

 

 
 

Figure 83 - Radial position for rotating test apparatus (θ = 15°, 15 clusters) 
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Figure 84 - Experimental percent error for rotating test apparatus (θ = 15°, 15 clusters) 

 

 

 

Magnetic Source at 30° 

 

 

 
 

Figure 85 - Output of magnetic sensors for rotating test apparatus (θ = 30°) 
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Figure 86 - Radial position for rotating test apparatus (θ = 30°, 15 clusters) 

 

 

 
Figure 87 - Experimental percent error for rotating test apparatus (θ = 30°, 15 clusters) 
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Magnetic Source at 45° 

 

 
 

Figure 88 - Output of magnetic sensors for rotating test apparatus (θ = 45°) 

 

 
 

Figure 89 - Radial position for rotating test apparatus (θ = 45°, 15 clusters) 
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Figure 90 - Experimental percent error for rotating test apparatus (θ = 45°, 15 clusters) 

 

 

 

Magnetic Source at 60° 

 

 

 
 

Figure 91 - Experimental output of magnetic sensors for rotating test apparatus (θ = 60°) 
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Figure 92 - Radial position for rotating test apparatus (θ = 60°, 15 clusters) 

 

 

 
 

Figure 93 - Experimental percent error for rotating test apparatus (θ = 60°, 15 clusters) 
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Appendix H – Experimental data for linear apparatus   
  

 

Magnetic Source at 15° 

 

 
 

Figure 94 - Output of magnetic sensors for linear test apparatus (θ = 15°) 

 

  
 

Figure 95 - Three-dimensional position for linear test apparatus (θ = 15°, 15 clusters) 
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Figure 96 - Error for linear test apparatus (θ = 15°, 15 clusters) 

 

 

 

 

Magnetic Source at 30° 

 

 
 

Figure 97  - Output of magnetic sensors for linear test apparatus (θ = 30°) 
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Figure 98 - Three-dimensional position for linear test apparatus (θ = 30°, 15 clusters) 

 

 

 
 

Figure 99 - Error for linear test apparatus (θ = 30°, 15 clusters) 
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Magnetic Source at 45° 

 

 
Figure 100 - Output of magnetic sensors for linear test apparatus (θ = 45°) 

 

 

  
 

Figure 101 - Three-dimensional position for linear test apparatus (θ = 45°, 15 clusters) 
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Figure 102 - Error for linear test apparatus (θ = 45°, 15 clusters) 
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