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Direct Impingement vs Vibration Base Shake

• Background

• Problem Statement

• Test and Observations

• Conclusions and Future Work

Agenda
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Space Launch System (SLS)

• Space Launch System (SLS)

– NASA’s future manned Mars launch vehicle

• Launch vehicle developers may put components on isolators inside the vehicle

– For example, heritage hardware being used in new flight environments

• Typically components mounted on isolators require both vibration and acoustic testing

Background
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• Performing both tests may impact cost and schedule
– Risk of not performing acoustic qualification test

is that hardware could fail due to exposure to high 

acoustic environments
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Direct Acoustic Impingement Concern
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• Vibration was assumed to be from external

panels which is structurally transmitted 

through isolator mounts. This was assumed 

to be the predominant source of vibration for 

components.
– This assumes effect of direct acoustic 

impingement on components is not the 

predominant source of vibration
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– For isolated components, only considering structurally transmitted 

vibration ignores the potentially predominant source of vibration – direct 

acoustic impingement

• NASA Marshall Engineering conducted development tests to 

investigate this possibly non-conservative assumption

– This assumption is generally valid for non-

isolated components

– However, isolation significantly mitigates 

structural transmission of vibration

• Acoustic impingement may then be the 

predominant source of vibration

Inside vehicle
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Problem Statement
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• Three avionics boxes representative of launch vehicle 

components were put through an acoustic test series

– Internal circuit boards and chassis were instrumented with 

accelerometers and strain gauges to measure vibration response

– Small box is heritage SRB flight hardware

• Then each box was vibration tested on a shaker table

• Allowed for comparison of response data between the acoustic 

test and vibration shaker table test responses

• Strain gauge data allowed for insight to subcomponent load 

factor development
RuggedizedLarge Small

Test Background

Test and Observations
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Vibration levels

• Criteria 1 and 2 were generic test levels that were representative of compartment levels

• Criteria 3 was derived from SMC-S-016 minimum acceptance test +3 dB

Vibration responses

• Data collected for all 3 axes, however, data shown are only responses normal to circuit boards 

• Same locations as acoustic test

Vehicle Zone Vibration Test Cases

Forward Criteria 1, Criteria 3

Midsection Criteria 1, Criteria 2, Criteria 3

Aft Criteria 1, Criteria 3
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Vibration Testing

Test and Observations
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Acoustic levels

• 6 OASPL test cases: 140 dB, 143 dB, 147 dB, 150 dB, 153 

dB, 157 dB

• Levels chosen representative of three sections of where 

launch vehicle avionics are located (Forward, Midsection, Aft)

• Panel dimensions: 60” x 14.25” x 0.7” aluminum

Large

Small

Ruggedized

Acoustic Testing

Test and Observations
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Microphone Input Criteria

143 dB Criteria (ECU -12 dB)

150 dB Critiera (ECU -6 dB)

157 dB Criteria (ECU MPE)

Forward Criteria (143 dB OASPL)

Midsection Criteria (150 dB OASPL)

Aft Criteria (157 dB OASPL)
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Vehicle Zone Acoustic Test SPL

Forward 143 dB OASPL

Midsection 150 dB OASPL

Aft 157 dB OASPL
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Direct Impingement Acoustic Test vs Shaker Test, Large Box Response R4X
Forward 143 dB OASPL

143 dB acoustic scaled

Non FTS qual input

Non FTS qual shaker 0 dB

Min accept input

Min accept shaker 0 dB

 Base shake response envelopes acoustic response

Criteria 1 input

Criteria 1 shaker 0 dB

Criteria 3 input

Criteria 3 shaker 0 dB

Forward (143 dB): Accelerometer R4X

Test and Observations
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(Data is typical response from all three boxes)
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Direct Impingement Acoustic Test vs Shaker Test, Large Box Response R4X
Midsection 150 dB OASPL

150 dB acoustic scaled

FTS qual input

FTS qual shaker 0 dB

Non FTS qual input

Non FTS qual shaker 0 dB

Min accept input

Min accept shaker 0 dB

 Acoustic response approaching base shake response

Criteria 2 input
Criteria 2 shaker 0 dB
Criteria 1 input
Criteria 1 shaker 0 dB
Criteria 3 input
Criteria 3 shaker 0 dB

Midsection (150 dB): Accelerometer R4X

Test and Observations
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(Data is typical response from all three boxes)
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Direct Impingement Acoustic Test vs Shaker Test, Large Box Response R4X
Aft 157 dB OASPL 

157 dB acoustic scaled

Non FTS qual input

Non FTS qual shaker 0 dB

Min accept input

Min accept shaker 0 dB

 Maximum acoustic response of fundamental board resonances is 

enveloped by base shake vibration

 Minor exceedance is deemed acceptable

 Criteria 3 (minimum acceptance + 3 dB) conservatively envelopes the 

flight environment prediction

Criteria 1 input

Criteria 1 shaker 0 dB

Criteria 3 input

Criteria 3 shaker 0 dB

Aft (157 dB): Accelerometer R4X

Test and Observations
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(Data is typical response from all three boxes)
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Conclusions and Future Work

Conclusions:

• Acoustic and vibration shaker table accelerometer responses were assessed and compared 

• Test data showed base shake vibration response envelopes acoustic induced vibration response 

in Forward & Midsection zones

• Aft zone acoustic responses greater than vibration response at some higher frequencies; 

however, there is still adequate margin in test criteria

• Structurally transmitted vibration is still the predominant source of vibration for isolated 

components of comparable size and construction as those tested in this series for 

acoustic levels up to ~157 dB OASPL

General recommendation:

• Include a minimum random vibration criteria for qualification of isolated hardware on future 

programs to avoid acoustic qualification tests

Future Work:

• Analyze strain gauge data gathered in this testing to aid in FEM correlation of avionics 
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Backup
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Strain measurements were collected on the boards at key interface locations

• Key interface locations were considered near a mounting stud or edge clamp

Vibration responses were also measured on the boards

• Measurement locations were taken near the center of the boards

Mounting Studs to Middle 

Rib on Opposite Side

Edge Clamp

Two orthogonal 

strain measurements

Strain Gauge Response Measurements
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Strain Gauge Response Measurements

• Preliminary results reveal same correlation of cumulative RMS velocity and RMS strain as 

seen with larger secondary structures

• Forward work is to further interrogate board measurements and bring back design insights to 

2018 SCLV

• Any analysis request from the community are welcome
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