89 research outputs found

    Influence of the π–π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases

    Get PDF
    The interplay between aromatic stacking and hydrogen bonding in nucleobases has been investigated via high-level quantum chemical calculations. The experimentally observed stacking arrangement between consecutive bases in DNA and RNA/DNA double helices is shown to enhance their hydrogen bonding ability as opposed to gas phase optimized complexes. This phenomenon results from more repulsive electrostatic interactions as is demonstrated in a model system of cytosine stacked offset-parallel with substituted benzenes. Therefore, the H-bonding capacity of the N3 and O2 atoms of cytosine increases linearly with the electrostatic repulsion between the stacked rings. The local hardness, a density functional theory-based reactivity descriptor, appears to be a key index associated with the molecular electrostatic potential (MEP) minima around H-bond accepting atoms, and is inversely proportional to the electrostatic interaction between stacked molecules. Finally, the MEP minima on surfaces around the bases in experimental structures of DNA and RNA–DNA double helices show that their hydrogen bonding capacity increases when taking more neighboring (intra-strand) stacking partners into account

    Structural basis of IL-23 antagonism by an Alphabody protein scaffold

    Get PDF
    Protein scaffolds can provide a promising alternative to antibodies for various biomedical and biotechnological applications, including therapeutics. Here we describe the design and development of the Alphabody, a protein scaffold featuring a single-chain antiparallel triple-helix coiled-coil fold. We report affinity-matured Alphabodies with favourable physicochemical properties that can specifically neutralize human interleukin (IL)-23, a pivotal therapeutic target in autoimmune inflammatory diseases such as psoriasis and multiple sclerosis. The crystal structure of human IL-23 in complex with an affinity-matured Alphabody reveals how the variable interhelical groove of the scaffold uniquely targets a large epitope on the p19 subunit of IL-23 to harness fully the hydrophobic and hydrogen-bonding potential of tryptophan and tyrosine residues contributed by p19 and the Alphabody, respectively. Thus, Alphabodies are suitable for targeting protein-protein interfaces of therapeutic importance and can be tailored to interrogate desired design and binding-mode principles via efficient selection and affinity-maturation strategies

    Definition and Independent Validation of a Proteomic-Classifier in Ovarian Cancer

    Get PDF
    Simple Summary: The heterogeneity of epithelial ovarian cancer and its associated molecular biological characteristics are continuously integrated in the development of therapy guidelines. In a next step, future therapy recommendations might also be able to focus on the patient's systemic status, not only the tumor's molecular pattern. Therefore, new methods to identify and validate host-related biomarkers need to be established. Using mass spectrometry, we developed and independently validated a blood-based proteomic classifier, stratifying epithelial ovarian cancer patients into good and poor survival groups. We also determined an age dependence of the prognostic performance of this classifier and its association with important biological processes. This work highlights that, just like molecular markers of the tumor itself, the systemic condition of a patient (partly reflected in proteomic patterns) also influences survival and therapy response and could therefore be integrated into future processes of therapy planning. Abstract: Mass-spectrometry-based analyses have identified a variety of candidate protein biomarkers that might be crucial for epithelial ovarian cancer (EOC) development and therapy response. Comprehensive validation studies of the biological and clinical implications of proteomics are needed to advance them toward clinical use. Using the Deep MALDI method of mass spectrometry, we developed and independently validated (development cohort: n = 199, validation cohort: n = 135) a blood-based proteomic classifier, stratifying EOC patients into good and poor survival groups. We also determined an age dependency of the prognostic performance of this classifier, and our protein set enrichment analysis showed that the good and poor proteomic phenotypes were associated with, respectively, lower and higher levels of complement activation, inflammatory response, and acute phase reactants. This work highlights that, just like molecular markers of the tumor itself, the systemic condition of a patient (partly reflected in proteomic patterns) also influences survival and therapy response in a subset of ovarian cancer patients and could therefore be integrated into future processes of therapy planning

    Cell-penetrating Alphabody protein scaffolds for intracellular drug targeting

    Get PDF
    The therapeutic scope of antibody and nonantibody protein scaffolds is still prohibitively limited against intracellular drug targets. Here, we demonstrate that the Alphabody scaffold can be engineered into a cell-penetrating protein antagonist against induced myeloid leukemia cell differentiation protein MCL-1, an intracellular target in cancer, by grafting the critical B-cell lymphoma 2 homology 3 helix of MCL-1 onto the Alphabody and tagging the scaffold’s termini with designed cell-penetration polypeptides. Introduction of an albumin-binding moiety extended the serum half-life of the engineered Alphabody to therapeutically relevant levels, and administration thereof in mouse tumor xenografts based on myeloma cell lines reduced tumor burden. Crystal structures of such a designed Alphabody in complex with MCL-1 and serum albumin provided the structural blueprint of the applied design principles. Collectively, we provide proof of concept for the use of Alphabodies against intracellular disease mediators, which, to date, have remained in the realm of small-molecule therapeutics

    Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC

    Get PDF
    tRNA damage inflicted by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies an antiviral response to phage T4 infection. PrrC homologs are present in many bacterial proteomes, though their biological activities are uncharted. PrrCs consist of two domains: an N-terminal NTPase module related to the ABC family and a distinctive C-terminal ribonuclease module. In this article, we report that the expression of EcoPrrC in budding yeast is fungicidal, signifying that PrrC is toxic in a eukaryon in the absence of other bacterial or viral proteins. Whereas Streptococcus PrrC is also toxic in yeast, Neisseria and Xanthomonas PrrCs are not. Via analysis of the effects of 118 mutations on EcoPrrC toxicity in yeast, we identified 22 essential residues in the NTPase domain and 11 in the nuclease domain. Overexpressing PrrCs with mutations in the NTPase active site ameliorated the toxicity of wild-type EcoPrrC. Our findings support a model in which EcoPrrC toxicity is contingent on head-to-tail dimerization of the NTPase domains to form two composite NTP phosphohydrolase sites. Comparisons of EcoPrrC activity in a variety of yeast genetic backgrounds, and the rescuing effects of tRNA overexpression, implicate tRNALys(UUU) as a target of EcoPrrC toxicity in yeast

    Structural and functional basis for RNA cleavage by Ire1

    Get PDF
    BACKGROUND: The unfolded protein response (UPR) controls the protein folding capacity of the endoplasmic reticulum (ER). Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase) domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. RESULTS: This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing \u3e/=7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL) of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. CONCLUSIONS: Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L

    Incidence and clinical impact of infective endocarditis after transcatheter aortic valve implantation

    Get PDF
    Aims: To describe the characteristics of infective endocarditis (IE) after transcatheter aortic valve implantation (TAVI). Methods and results: This study was performed using the GAMES database, a national prospective registry of consecutive patients with IE in 26 Spanish hospitals. Of the 739 cases of IE diagnosed during the study, 1.3% were post-TAVI IE, and these 10 cases, contributed by five centres, represented 1.1% of the 952 TAVIs performed. Mean age was 80 years. All valves were implanted transfemorally. IE appeared a median of 139 days after implantation. The mean age-adjusted Charlson comorbidity index was 5.45. Chronic kidney disease was frequent (five patients), as were atrial fibrillation (five patients), chronic obstructive pulmonary disease (four patients), and ischaemic heart disease (four patients). Six patients presented aortic valve involvement, and four only mitral valve involvement; the latter group had a higher percentage of prosthetic mitral valves (0% vs. 50%). Vegetations were found in seven cases, and four presented embolism. One patient underwent surgery. Five patients died during follow-up: two of these patients died during the admission in which the valve was implanted. Conclusions: IE is a rare but severe complication after TAVI which affects about 1% of patients and entails a relatively high mortality rate. IE occurred during the first year in nine of the 10 patients

    Insights into the Mechanism of Bovine CD38/NAD+Glycohydrolase from the X-Ray Structures of Its Michaelis Complex and Covalently-Trapped Intermediates

    Get PDF
    Bovine CD38/NAD+glycohydrolase (bCD38) catalyses the hydrolysis of NAD+ into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2′-fluorinated analogs of NAD+. Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218. Compared to the non-covalent (Michaelis) complex, the ligands adopt a more folded conformation in the covalent complexes. Altogether these crystallographic snapshots along the reaction pathway reveal the drastic conformational rearrangements undergone by the ligand during catalysis with the repositioning of its adenine ring from a solvent-exposed position stacked against Trp168 to a more buried position stacked against Trp181. This adenine flipping between conserved tryptophans is a prerequisite for the proper positioning of the N1 of the adenine ring to perform the nucleophilic attack on the C1′ of the ribofuranoside ring ultimately yielding cADPR. In all structures, however, the adenine ring adopts the most thermodynamically favorable anti conformation, explaining why cyclization, which requires a syn conformation, remains a rare alternate event in the reactions catalyzed by bCD38 (cADPR represents only 1% of the reaction products). In the Michaelis complex, the substrate is bound in a constrained conformation; the enzyme uses this ground-state destabilization, in addition to a hydrophobic environment and desolvation of the nicotinamide-ribosyl bond, to destabilize the scissile bond leading to the formation of a ribooxocarbenium ion intermediate. The Glu218 side chain stabilizes this reaction intermediate and plays another important role during catalysis by polarizing the 2′-OH of the substrate NAD+. Based on our structural analysis and data on active site mutants, we propose a detailed analysis of the catalytic mechanism

    CCNE1 and survival of patients with tubo-ovarian high-grade serous carcinoma: An Ovarian Tumor Tissue Analysis consortium study

    Get PDF
    BACKGROUND: Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian high-grade serous carcinoma (HGSC). Smaller studies have revealed unfavorable associations for CCNE1 amplification and CCNE1 overexpression with survival, but to date no large-scale, histotype-specific validation has been performed. The hypothesis was that high-level amplification of CCNE1 and CCNE1 overexpression, as well as a combination of the two, are linked to shorter overall survival in HGSC. METHODS: Within the Ovarian Tumor Tissue Analysis consortium, amplification status and protein level in 3029 HGSC cases and mRNA expression in 2419 samples were investigated. RESULTS: High-level amplification (>8 copies by chromogenic in situ hybridization) was found in 8.6% of HGSC and overexpression (>60% with at least 5% demonstrating strong intensity by immunohistochemistry) was found in 22.4%. CCNE1 high-level amplification and overexpression both were linked to shorter overall survival in multivariate survival analysis adjusted for age and stage, with hazard stratification by study (hazard ratio [HR], 1.26; 95% CI, 1.08-1.47, p = .034, and HR, 1.18; 95% CI, 1.05-1.32, p = .015, respectively). This was also true for cases with combined high-level amplification/overexpression (HR, 1.26; 95% CI, 1.09-1.47, p = .033). CCNE1 mRNA expression was not associated with overall survival (HR, 1.00 per 1-SD increase; 95% CI, 0.94-1.06; p = .58). CCNE1 high-level amplification is mutually exclusive with the presence of germline BRCA1/2 pathogenic variants and shows an inverse association to RB1 loss. CONCLUSION: This study provides large-scale validation that CCNE1 high-level amplification is associated with shorter survival, supporting its utility as a prognostic biomarker in HGSC
    corecore