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Simple Summary: The heterogeneity of epithelial ovarian cancer and its associated molecular
biological characteristics are continuously integrated in the development of therapy guidelines. In a
next step, future therapy recommendations might also be able to focus on the patient’s systemic status,
not only the tumor’s molecular pattern. Therefore, new methods to identify and validate host-related
biomarkers need to be established. Using mass spectrometry, we developed and independently
validated a blood-based proteomic classifier, stratifying epithelial ovarian cancer patients into good
and poor survival groups. We also determined an age dependence of the prognostic performance
of this classifier and its association with important biological processes. This work highlights that,
just like molecular markers of the tumor itself, the systemic condition of a patient (partly reflected in
proteomic patterns) also influences survival and therapy response and could therefore be integrated
into future processes of therapy planning.

Abstract: Mass-spectrometry-based analyses have identified a variety of candidate protein biomarkers
that might be crucial for epithelial ovarian cancer (EOC) development and therapy response.
Comprehensive validation studies of the biological and clinical implications of proteomics are
needed to advance them toward clinical use. Using the Deep MALDI method of mass spectrometry,
we developed and independently validated (development cohort: n = 199, validation cohort: n = 135)
a blood-based proteomic classifier, stratifying EOC patients into good and poor survival groups.
We also determined an age dependency of the prognostic performance of this classifier, and our protein
set enrichment analysis showed that the good and poor proteomic phenotypes were associated with,
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respectively, lower and higher levels of complement activation, inflammatory response, and acute
phase reactants. This work highlights that, just like molecular markers of the tumor itself, the systemic
condition of a patient (partly reflected in proteomic patterns) also influences survival and therapy
response in a subset of ovarian cancer patients and could therefore be integrated into future processes
of therapy planning.

Keywords: ovarian cancer; proteomics; mass spectrometry; survival

1. Introduction

Despite all the advances in ovarian cancer research, and the understanding of the heterogeneity of
this disease, epithelial ovarian cancer (EOC) still has the highest mortality rate of all gynecological
malignancies, with a five-year survival in advanced stages of only 30%. Primary therapy for patients
with EOC is radical cytoreductive surgery, followed by adjuvant platinum-based chemotherapy,
administered in six cycles of carboplatin and paclitaxel with/without bevacizumab [1]. More recently,
PARP (Poly(ADP-ribose)-Polymerase)-inhibition was also introduced in the first-line-treatment for
selected patients [2]. Initial response to therapy can be divided into three categories: platinum-resistant
or -refractory, platinum-partially sensitive, and platinum-responsive. The duration of response
to primary chemotherapy is considered the most important factor for treatment of recurrence [3].
Management of EOC could be improved by the use of validated biomarkers to identify patients,
in advance of therapy, that are likely to be platinum resistant and at high risk of early progression [4].

The potential of proteomics-guided therapy stratification in EOC was highlighted over a decade
ago [5,6]. Mass spectrometry (MS) is one of the main technologies used in protein biomarker
development, producing reproducible measurements [7]. Based on plasma or serum samples,
this minimally invasive technique can be routinely performed in a clinical laboratory. MS-based
analyses have identified a variety of candidate protein biomarkers that might be crucial for EOC
development and diagnosis [8–10], and the FDA-cleared Ova1 test (Vermillion, Austin, TX, USA) is
based on differentially expressed proteins originally identified by using a Surface-Enhanced Laser
Desorption/Ionization (SELDI)–time of flight (TOF) MS platform [11–13].

To address the unmet need for non-invasive tests to select patients likely not to respond to standard
treatment in EOC [5], we here describe the development and independent validation of an MS-based
plasma proteomic classifier that stratifies patients with primary EOC prior to standard treatment.
As standardization and optimization of protocols are of utmost importance in cancer research, we made
use of a Matrix-Assisted Laser Desorption/Ionization (MALDI)–TOF platform and the Deep MALDI
method of MS, extending the observable dynamic range in a single workflow [14]. These processed
spectral data were combined with clinical outcome data, using a machine learning approach optimized
for the personalized medicine setting, where there are typically more measured attributes than patient
samples [15,16]. The resulting test was completely locked before application to the independent
validation cohort, assessment of underlying biology, and evaluation of test reproducibility.

2. Results

2.1. Patients and Samples

Plasma samples obtained within one week before surgery were used for classifier development
and validation. The development cohort (DC) comprised 199 patients with EOC treated at the
Department of Gynecology and Obstetrics at University of Essen, Germany, diagnosed between
2004 and 2014. Median overall survival (OS) of the DC was 63 months (95% Confidence Interval
(CI) 47 months, undefined). The independent validation cohort (VC) comprised 135 patients
with EOC treated within the European OVCAD consortium (Berlin, Hamburg (Germany), Leuven
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(Belgium) and Innsbruck, Vienna (Austria)), diagnosed between 2005 and 2008 [17]. Median OS
of the VC was 52 months (95% CI: 43–64 months). All patients had histologically confirmed EOC.
Patient characteristics are shown in Table 1. All patients were treated according to the guidelines that
were recommended during the indicated study period, namely radical cytoreductive surgery and
platinum-based chemotherapy. Median follow-up for both cohorts exceeded five years. A total of
87 DC and 76 VC patients died within the follow-up period of the respective studies.

As we had hypothesized that outcome-related molecular signatures could differ between younger
and older patients, for test development and performance assessment, DC patients were divided into
two subgroups, by age: age 55 or younger (77 patients (39%)) and age 56 or older (122 patients (61%)).
The threshold of 55 years of age was chosen to be close to menopause and to allow enough patients in
each subgroup for analysis.

Table 1. Patient characteristics for development and validation cohort.

Characterstic Development Cohort (n = 199) n (%) Validation Cohort (n = 135) n (%)

Histology serous 142 (71) 113 (84)
non-serous 57 (29) 22 (16)

FIGO 1 36 (18) 0 (0)
2 7(4) 8 (6)
3 119 (60) 101 (75)
4 37 (19) 26 (19)

Histologic NA 2 (1) 0 (0)
Grade 1 11 (6) 4 (3)

2 81 (41) 30 (22)
3 105 (53) 101 (75)

Residual yes 83 (42) 38 (28)
Tumor no 113 (57) 97 (72)

NA 3 (2) 0 (0)

Age ≤55 77 (39) 58 (43)
>55 122 (61) 77 (57)

Median (range) Median (range)

Age 59 (18–88) 57 (27–85)

FIGO: Fédération Internationale de Gynécology et d’Obstétrique; NA: not available.

2.2. Development Cohort

Data from each age category (≤55 years and ≥56 years) were used separately to generate two tests
(classifiers) able to stratify patients into two subgroups: “good” and “poor” with better and worse
outcomes, respectively. The tests were then applied to the mass spectral data of all patients in the DC.
Out-of-bag methods [18] were used to produce reliable test classifications for patients whose data were
used in classifier creation. Performance of the two tests, trained using data from older and younger
patients, respectively, were quite similar (see Figure S1), and we decided to continue using only the
test trained using data from the older patients. All subsequent results presented herein pertain to the
test trained on the older patient subgroup from the DC.

A heatmap of the 269 mass-spectral features used in the test for each of the samples in the DC
is shown in Figure 1. Results of the analysis of univariate association of each MS feature with test
classification are contained in the Supplementary Materials.

Of the 199 patients in the DC, 106 (53%) were assigned to the good group, and the remaining
93 (47%) to the poor group. Within younger patients (n = 77), 55% (42/77) were classified as good;
in the subgroup of older patients, 52% (64/122) were classified as good. Patient characteristics of
each subgroup are summarized in the Supplementary Materials overall and by test classification
(Tables S1–S3). Test classification was associated with known baseline prognostic factors, including
histology, grade, and stage (Table S1). In addition, classification was strongly associated with presence
of residual tumor after surgery. Seventy-four percent (79/106) of patients classified as good had no
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tumor remaining after surgery, compared with only 38% (35/93) of patients classified as poor (Fisher’s
exact test p < 0.001). This correlation was particularly clear in patients age 55 or younger, where 86%
(36/42) of the good group had no residual tumor after surgery, compared with only 37% (13/35) of
patients in the poor group (p <0.001).

Figure 1. Heatmap of the natural logarithm of features used in the test. Samples in the development
cohort are shown as rows, grouped by test classification (good or poor) and age category (younger
(age ≤ 55) and older (age ≥ 56)). Mass spectral features are shown as columns. Features and samples
are hierarchically clustered.

Survival Analyses

Kaplan–Meier (KM) plots for OS and progression-free survival (PFS) for the whole DC, as well as
the subgroups of younger (age ≤ 55) and older patients (age ≥ 56), are shown in Figure 2.

Figure 2. Kaplan–Meier (KM) plots by test classification (good vs. poor) of overall and progression-free
survival for the development cohort (DC): overall (DC, n = 199) and for younger patients (age ≤ 55,
n = 77) and older patients (age ≥ 56, n = 122) separately. The number of patients at risk in the KM
analysis at two-year intervals in each test classification group (green = good, and purple = poor) is
shown below the x-axis.

In younger patients, both OS and PFS show significant differences between test classification
groups (p < 0.001 and p < 0.001, respectively), with substantial effect sizes for each (hazard ratios
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(HRs) OS: HR 0.18 (95% CI: 0.07–0.45); PFS: HR 0.28 (95% CI: 0.14–0.58)). One-, two-, and five-year
survival rates were 83%, 71%, and 38% for the poor group and 98%, 95%, and 85% for the good group.
Median PFS was 15 (95% CI: 11–51) months for the poor group, whereas, in the good group, the median
was not reached. PFS rates at six months and 12 months were 85% and 64%, respectively, for the
poor group, and 95% and 90%, respectively, for the good group.

In the subgroup of older patients, patients classified as good had significantly better OS (HR = 0.55
(95% CI: 0.33–0.90); p = 0.018). Median OS was 56 (95% CI: 41-undefined) months for patients classified
as good and 31 (95% CI: 25–62) months for patients classified as poor. One-, two-, and five-year
survival rates were 83%, 66%, and 40% for the poor group and 94%, 85%, and 49% for the good group.
No significant differences were seen in PFS (p = 0.559).

As a test predictive of outcome would be of most potential utility for patients with advanced,
high-grade serous EOC, a subgroup analysis was performed in patients with serous histology, FIGO
statuses III and IV, and tumor grades 2 and 3 (n = 121; Figure 3). Fifty-five (45%) of the 121 patients
with high-grade serous advanced-stage disease were assigned a good test classification, whereas 66/121
(55%) were identified as poor. Within younger patients, 16/38 (42%) were classified as good, and in
older patients, 39/83 (47%) were classified as good. As is apparent from Figure 3, significant differences
were obtained between the good and poor subgroups within younger patients for OS (HR = 0.13
(95% CI: 0.03–0.46), p = 0.002) and PFS (HR = 0.19 (95% CI: 0.08–0.48), p < 0.001). Median OS and PFS
were only 31 months and 13 months, respectively, for younger patients classified as poor. One-, two-,
and five-year survival was 100%, 100%, and 75% for younger patients classified as good, and 82%,
67%, and 22% for those classified as poor. Six- and twelve-month PFS was 93% and 93% vs. 81% and
53% for good vs. poor subgroups of younger patients, respectively. The test was not able to provide a
meaningful stratification of outcomes for older patients with high-grade advanced-stage serous EOC
(p = 0.201 for OS and p = 0.592 for PFS).

Figure 3. KM plots by test classification of overall and progression-free survival for all patients (n = 121),
younger patients (n = 38), and older patients (n = 83) with advanced-stage high-grade serous ovarian
carcinoma in the development cohort. The number of patients at risk in the KM analysis at two-year
intervals in each test classification group (green = good, and purple = poor) is shown below the x-axis.
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2.3. Validation Cohort

Within the independent VC (n = 135), the test classified 66 patients (49%) to the good group and the
remaining 69 patients (51%) to the poor group. In the subgroups of younger/older patients (age ≤ 55,
n = 58; age ≥ 56 years, n = 77), 43%/53% were classified as good, respectively. Test classification was
associated with grade (p = 0.049; see Table S4). Test classification was not associated with presence
of tumor after surgery in the VC (p = 0.345). However, 92% of the younger patients (23/25, age ≤ 55)
classified as good had no residual tumor post-surgery, compared to 73% (24/33) of patients classified as
poor (Fisher exact test p = 0.093).

Survival Analyses

Kaplan–Meier plots for OS and PFS for the VC, as well as the subgroups of younger and older
patients, are shown in Figure 4. Younger patients (age ≤ 55; n = 58) had significantly longer OS and
PFS if classified as good (p = 0.015 and p = 0.034, respectively), with substantial effect sizes for each
(hazard ratios OS: HR 0.31 (95% CI: 0.12–0.79); PFS: HR 0.48 (95% CI: 0.25–0.95)). In contrast to the
poor group, with one-, two-, and five-year survival rates of 97%, 85%, and 43% and a median OS time
of 53 (95% CI: 44-undefined) months, the values for the good group were 96%, 96%, and 80%, with the
median OS not reached. Median PFS was 19 (95% CI: 9–32) months and 57 (95% CI: 20-undefined)
months in the poor and good group, respectively. PFS rates at six and 12 months were 94% and 58%,
respectively, for the poor group, and 96% and 84%, respectively, for the good group.

Figure 4. KM plots by test classification (good vs. poor) of overall and progression-free survival for
the validation cohort (VC): overall (VC, n = 135) and for younger patients (age ≤ 55, n = 58) and older
patients (age ≥ 56, n = 77) separately. The number of patients at risk in the KM analysis at two-year
intervals in each test classification group (green = good, and purple = poor) is shown below the x-axis.

Comparing good versus poor in the group of older patients (age ≥ 56; n = 77), we see that the test
was unable to stratify PFS or OS. OS was similar for good and poor groups (p = 0.650). Median survival
was 40 (95% CI: 29–57) months for the poor group and 38 (95% CI: 19–57) months for the good group.
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No significant differences were seen in PFS, with a median PFS of 13 (95% CI: 8–17) months in the poor
group and 15 (95% CI: 7–19) months in the good group.

2.4. Multivariate Analyses DC and VC

In the younger patient subgroup of the DC, the classification was a clear univariate predictor of
both OS and PFS and remained a significant predictor of OS and PFS in multivariate analysis adjusted
for known prognostic factors (Table 2). Hence, although test classification was associated with many
prognostic factors (see Supplementary Materials), it provided additional information on outcome,
complementary to these other factors. Separate analyses adjusting separately for FIGO stage and
residual tumor alone are contained within Tables S5 and S6 and support this conclusion.

In the VC younger patient subgroup, the point values of hazard ratios were not appreciably
diminished when other important prognostic factors were included in the multivariate analysis;
however, the associated p-values increased slightly above the 0.05 level, likely due to small sample size
(n = 58).

Table 2. Multivariate analysis of overall survival (OS) and progression-free survival (PFS) for younger
patients in the DC and in the VC.

Development Cohort

OS PFS

HR (95% CI) p-Value HR (95% CI) p-Value

Test Classification (vs. poor) good 0.23 (0.08–0.65) 0.005 0.31 (0.12–0.79) 0.014

FIGO (vs. IV) I/II 0.24 (0.06–1.02) 0.054 0.12 (0.02–0.59) 0.009
III 0.70 (0.29–1.72) 0.439 0.58 (0.25–1.36) 0.209

Histology (vs. serous) non-serous 1.15 (0.45–2.91) 0.775 0.85 (0.31–2.33) 0.749

Grade (vs. 3) 1/2 0.76 (0.32–1.79) 0.533 1.35 (0.63–2.88) 0.440

Residual Tumor (vs. yes) no 1.19 (0.39–3.62) 0.759 1.37 (0.48–3.87) 0.559

Validation Cohort

OS PFS

HR (95% CI) p-value HR (95% CI) p-value

Test Classification (vs. poor) good 0.43 (0.16–1.20) 0.108 0.49 (0.23–1.06) 0.0686

FIGO (vs. IV) I/II 0.14 (0.01–1.53) 0.108 0.08 (0.01–0.55) 0.010
III 0.29 (0.09–0.92) 0.036 0.25 (0.08–0.78) 0.017

Histology (vs. serous) non-serous 2.01 (0.61–6.60) 0.249 1.44 (0.57–3.62) 0.437

Grade (vs. 3) 1/2 0.72 (0.24–2.12) 0.548 0.49 (0.23–1.06) 0.070

Residual Tumor (vs. yes) no 1.67 (0.63–4.43) 0.305 0.80 (0.26–2.44) 0.692

2.5. Detailed Analysis of Age Dependence

A more detailed analysis in the DC of age dependence of the ability of the test to stratify
patient outcome showed evidence of a steady deterioration with increasing age, with no evidence
of stratification power for the oldest patients. In particular, it was noted that the dependence of
outcome on age and test classification could be well captured in a product of the two attributes
(ProteomicAgeClassification = 0 for patients classified as poor, and ProteomicAgeClassification = 0.1
(80-Age in years) for patients classified as good). The results of multivariate analysis of OS and PFS,
using this compound variable, are given in Table 3. Multivariate analysis in the validation set verified
the significance of this compound variable as an independent predictor of OS and PFS. Note that a
ProteomicAgeClassification HR of 0.80 indicates that outcomes deteriorate by 20% for each ten-year age
increase for patients with a good classification, while patients classified as poor have similar outcomes
regardless of age.
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Table 3. Multivariate analysis, using the compound age/test classification attribute for the DC and
the VC.

Development Cohort

OS PFS

HR (95% CI) p-Value HR (95% CI) p-Value

ProteomicAgeClassification 0.68 (0.56–0.83) <0.001 0.85 (0.73–1.00) 0.047

FIGO (vs. IV) I/II 0.17 (0.07–0.42) <0.001 0.08 (0.03–0.21) <0.001
III 0.46 (0.28–0.75) 0.002 0.51 (0.30–0.84) 0.009

Histology (vs. serous) non-serous 1.53 (0.94–2.48) 0.087 1.71 (1.04–2.81) 0.034

Grade (vs. 3) 1/2 0.97 (0.62–1.50) 0.881 1.35 (0.88–2.09) 0.171

Residual Tumor (vs. yes) no 1.71 (1.06–2.77) 0.028 1.67 (1.05–2.64) 0.029

Validation Cohort

OS PFS

HR (95% CI) p-Value HR (95% CI) p-Value

ProteomicAgeClassification 0.81 (0.67–1.00) 0.045 0.83 (0.70–0.98) 0.030

FIGO (vs. IV) I/II 0.62 (0.19–2.01) 0.428 0.26 (0.07–0.94) 0.040
III 0.49 (0.28–0.84) 0.010 0.56 (0.32–0.96) 0.035

Histology (vs. serous) 0.88 (0.45–1.69) 0.695 0.79 (0.43–1.46) 0.458

Grade (vs. 3) 1/2 0.99 (0.56–1.76) 0.981 0.95 (0.58–1.54) 0.835

Residual Tumor (vs. yes) no 2.20 (1.33–3.65) 0.002 1.74 (1.03–2.95) 0.039

2.6. Test Reproducibility

Previous studies have examined in detail the analytical reproducibility of Deep MALDI mass
spectra [14]. Using the same mass spectrometer and spectral acquisition procedures, it was shown,
for a similar set of 298 mass spectral features as used in this work, that the median CV across features
was 2.3% with interquartile range 1.4–5.0%. Here, we focus on the impact of variation in the acquired
mass spectra on the reproducibility of the test classification. Test classification reproducibility was
assessed by rerunning the test on a subset of 34 samples from the younger patients in the DC. The entire
test procedure, from thawing samples, preparing samples, acquiring mass spectra, processing mass
spectra to classifying the processed spectra data, was repeated. Concordance of test classifications
between the two runs was 97% (see Table S7). A subset of the younger patients (n = 37) from the
DC had serum and plasma samples collected at the same time. Analysis of these serum samples by
identical procedures showed a concordance between test classifications generated from serum and
plasma of 89% (see Table S8), indicating the likelihood that the test could be run on serum as well as
plasma samples.

2.7. Protein Set Enrichment Analysis (PSEA)

The association of various biological processes with test classifications was investigated by using
PSEA methods. Set enrichment analysis was carried out by using the Reference Sample Set (n = 46),
for which both protein panel expression and mass spectral data were available. A test classification
was generated for each sample in the Reference Sample Set. Twenty samples (43%) were classified
as poor, and the remaining 26 samples (57%) were classified as good. Univariate correlation of protein
expression from the SOMAscan assay with test classification with Mann–Whitney p < 0.001 and false
discovery rates (FDRs) < 0.10 were found for the following proteins: complement C2, complement
factor B, retinol-binding protein 4, kallistatin, complement protein C9, C reactive protein, insulin-like
growth factor-binding protein 1, and D-dimer. (Results for all 1305 proteins in the panel and the
membership of proteins within the subsets associated with each biological process investigated are
provided in the Table S9.)
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Set enrichment methods were used to determine the association between biological processes
of interest and test classification. The good test classification was associated with lower levels of
complement activation (p = 0.002), acute inflammation (p = 0.003), and acute phase reactants (p = 0.001),
all with false discovery rates of <0.03. A table showing the full set enrichment analysis results is in
Table S10.

3. Discussion

In the era of increasing affordability and applicability of proteomic analyses, the treatment of
a variety of cancers has been diversified. Novel non-invasive platforms, including proteomics of
blood-based samples, have evolved during recent years [19]. In this study, we identified a proteomic
classifier stratifying patients into a “good” phenotype and “poor” phenotype, with respectively better
and worse OS and PFS.

The classifier was first developed in a development cohort of 199 EOC patients. A significant
association between PFS or OS and the stratification according to the proteomic classifier was then seen
only in patients younger than 56 years of age. PFS rates at 12 months were 64% for the poor-signature
and 90% for the good-signature group. This effect translated to OS, with a five-year survival rate of
38% compared to 85% for the poor-signature and good-signature group, respectively. The test was
also able to provide a meaningful stratification of outcomes in the subgroup of younger patients with
advanced-stage high-grade serous ovarian cancer. The classifier thus helps to identify a subgroup
of patients likely to respond less well to standard therapy. Current standard treatment of EOC
consists of surgery, followed by adjuvant platinum-based chemotherapy, with/without bevacizumab
or PARP-inhibitors as maintenance therapy. Since chemotherapy-resistance is a major problem in EOC,
selection criteria are needed to identify patients in need of alternative therapies. Unfortunately,
treatment options for EOC patients not likely to respond to platinum-based chemotherapy are limited.
Still, dose-dense protocols could be proposed [20] for patients at highest risk of recurrence or progression,
and acceleration of molecular analyses for precision tumor boards to determine actionable molecular
alterations [21], followed by advanced access to targeted therapies, could be discussed.

We saw good performance of the developed classifier in younger patients (≤55 years) not only
in the DC, but also in an independent VC. A significant association between PFS or OS and the
stratification, according to the proteomic classifier, was seen in the younger patient subgroup of the VC.

As performance of the classifier demonstrated a consistent dependence on age in both the DC and
the VC, we analyzed the age dependence of the classifier and found a deterioration with increasing
age, with no evidence of proteomic-based stratification power for the oldest patients. A newly
defined variable combining age and the proteomic classification showed significance, independent
of known prognostic parameters for OS and PFS in the DC, and we verified the significance of this
compound variable as an independent predictor of both OS and PFS in the VC. An age-dependence
of proteomic measurements is not surprising, as aging of different cell types and tissues results in
proteomic changes [22]. Lehallier et al. described a significant overlap between disease proteomes
and the waves of aging proteins [23], and proteomics is frequently used in aging research [24,25].
However, it is of note that our observations follow from age-dependent changes in the association
of our proteomic phenotypes with outcome, rather than from our measurement of age dependent
changes in the proteome itself. Our data indicate that the significance of proteomics-based research in
EOC is increased if age is accounted for in the analyses.

The test classification was strongly associated with the presence of residual tumor after surgery
in the DC (p < 0.001). Although this association did not reach the level of statistical significance in
the VC, it would be interesting to further investigate the impact of MS-based algorithms, together with
previously described criteria [26,27], for predicting incomplete cytoreduction in advanced EOC.

The aim of this analysis was to identify EOC patients in need of alternative treatment approaches
(poor responders to standard treatment) by focusing particularly on patients’ proteomic-systemic
condition. A similar strategy has been successfully investigated in lung cancer patients, where an
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MS-based proteomic biomarker classification (the VeriStrat® test; Biodesix, Boulder, CO, USA) was
first developed in training and validation sets [28] and further tested and validated in a variety of
prospective and retrospective clinical trials: The predictive and prognostic effects on response and
survival were validated in a subset of patients enrolled in the NCIC Clinical Trials Group, BR.21
phase III trial of erlotinib versus placebo in previously treated advanced non-small-cell lung cancer
patients [29]. In a prospective phase III trial designed to investigate the predictive potential of the
biomarker between second-line erlotinib or chemotherapy in non-small-cell lung cancer, patients were
stratified into a “good signature” group and a “poor signature” group. Patients with a poor VeriStrat
proteomic test classification had worse survival with erlotinib than chemotherapy (HR 1.72; 95% CI,
1.08–2.74; p = 0.022) [30], and the test was predictive of differential benefit between the two therapies.
Furthermore, pretreatment VeriStrat status was correlated with survival in the phase III LUX-Lung 8
study of 795 patients [31]. Further studies have indicated that the MS-based proteomic classifier is
likely detecting a tumor–host response to the presence of the cancer [29,32].

Why does the proteome matter? Not every patient has the same systemic condition. As we
have started to better understand that tumor heterogeneity entails that different treatment strategies
need to be defined according to the tumor’s molecular biology, there is also a need to incorporate the
patients’ (hosts’) individual variability in treatment planning. In the light of an increasing number of
immunotherapy trials in EOC [33] (e.g., ClinicalTrials.gov Identifier: NCT02891824, NCT02718417,
NCT02674061, NCT02498600, NCT02484404, and NCT03737643), it becomes more and more evident
that the “heterogeneity” of the patient’s systemic condition, such as the individual immunological
host-response to the cancer, also needs to be taken into account when establishing the optimal treatment
for our patients. Beyond cell-free DNA and circulating tumor DNA originating from normal and
cancer cells, soluble protein and peptides represent biomolecular analytes that can easily be measured
for clinical diagnostic purposes.

Here we used the Deep MALDI method of mass spectrometry, resulting in a deeper probing of
the proteome, by increasing the signal-to-noise ratio of the measurements and an increased number of
measurable circulating proteins from human blood samples [14]. This technique has recently been
used for outcome stratification of patients receiving immunotherapy [34–36].

Protein set enrichment analysis indicated that test classification was associated with complement
activation, acute phase reactants, and acute inflammation. Test classification was also shown to
be associated with expression of complement C2, complement factor B, RBP4, kallistatin, C9, CRP,
insulin-like growth factor-binding protein 1 (IGF-1), and D-dimer. Association of these proteins with
prognosis in cancer, in general, and EOC, in particular, has been observed in previous studies [37–43].
In this regard, meta-analyses demonstrated that high CRP levels were associated with increased risk of
invasive EOC [38], whereas no significant association of IGF-1/IGFBP-3 with EOC risk was identified [39].
In addition, RBP4 was shown to drive ovarian cancer cell migration [40]; pretreatment plasma D-dimer
levels were associated with chemoresistance and poor disease outcome [41,42]; and low expression
of kallistatin was associated with unfavorable prognosis, platinum resistance, and relapse [43].
These results indicate a potential relation to the individual immunological host-response to cancer.
Additionally, systemic inflammatory response is known to be associated with cancer cachexia and
thus muscle atrophy, weakness, fatigue, and reduced survival in patients with advanced EOC [44].
Patients with peritoneal metastasis often present with a nutritional deficit and cancer cachexia [45].
The proteomic signature of these patients might be of particular importance in treatment planning.

The use of multisite samples in the VC derived from the EU-project OVCAD [17,46] allowed us to
test that our results are “robust” against slight differences that might occur between sites in sample
collection and storage conditions [13]. Additionally, as reproducibility is essential in cancer research,
we reran the test from scratch (including sample preparation, and spectral acquisition and processing
and classification) in a subset of patients, reaching an agreement of 97% in classification accuracy.
Concordance of 89% was seen between test classifications generated from serum and plasma samples
obtained simultaneously from a subset of patients in this study, indicating that the proposed procedure
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might be feasible in both serum and plasma samples. As a patient’s proteomic signature reflects
a specific health condition at a given time point, it may be essential for therapy guidance [47].
We used mass-spectral data and machine learning to develop a classifier that stratifies patients into two
proteomic phenotypes. Patients in the “good” phenotype exhibited worse outcomes with increasing age,
whereas patients in the “poor” phenotype had poor outcomes regardless of age. For younger patients
(<56 years of age), patients classified as “good” had significantly better outcomes than those classified
as “poor”. The association of the proteomic classifications with biological processes such as acute
inflammation indicates a potential relation to the individual immunological host-response to cancer.
We believe that combining molecular characteristics of the tumor and biomarkers of the hosts’ systemic
condition might enhance therapy selection in the future.

4. Material and Methods

4.1. Cohorts and Patient Characteristics

Written informed consent was obtained from all patients, and the study was approved by the
respective local ethics committees and performed according to the Declaration of Helsinki (ethics
code: 05-2870 (Essen), EK366/EK260 (Vienna), EK207/2003 (Berlin), ML2524 (Leuven), HEK190504
(Hamburg)). The data processing was completely anonymized. Tumors were classified according
to the World Health Organization classification of tumors of the female genital tract. Grading was
conducted by using the grading system proposed by Silverberg, and tumor staging was classified
according to the Fédération Internationale de Gynécology et d’Obstétrique (FIGO).

In addition to the development and validation cohort already described, an independent set of
46 serum samples collected from 46 female patients with cancer (Reference Sample Set) was used for set
enrichment analyses of the association of various biological processes with classification groups of the
developed test. These samples were obtained from commercial biobanks (Conversant Bio (Huntsville,
AL, USA) and Oncology Metrics (Forth Worth, TX, USA)), under their ethics-approved protocols.

4.2. Spectral Acquisition

Spectral acquisition and processing were performed by using the Deep MALDI method of
mass spectrometry on a SimulToF mass spectrometer (SimulTof Systems, Marlborough, MA, USA).
This approach, requiring only 3 µL of plasma, allows a for deeper probing of the proteome
(i.e., assessment of peaks spanning a higher range of intensities) than is possible with conventional
MALDI methods, by exposing the samples to many more laser “shots” (400,000, as compared with
typically 1000–10,000) [14] (see Figure 5).

The resulting spectra were processed to render them reproducible and comparable between
samples, as has been described elsewhere [34] (see also Supplementary Materials including
Tables S10–S14). Mass spectral features were defined as regions in the mass spectra containing
identifiable peaks in at least some spectra, see Figure 5 and Figure S2. Features known to demonstrate
poor reproducibility or related to sample hemolysis were not used, leaving 269 mass spectral features
(listed in the Supplementary Materials, Table S15) for analysis. All parameters were defined by using
only the development set of samples, and this fully fixed procedure was applied to the validation
cohort without modification.
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Figure 5. Comparison of a conventional MALDI spectrum with a Deep MALDI spectrum. A 2400-shot
conventional spectrum (blue) and a 400,000-shot Deep MALDI spectrum (red) for a sample in
the development cohort are shown for three regions of the mass spectrum: (a) 4325–4535 Da,
(b) 9380–9800 Da, and (c) 22,470–23,520 Da. The orange bands show the locations of mass-spectral
features.

4.3. Test Development

Spectral data from the development set of samples were used to generate a test able to stratify
patients into two groups, good and poor, with better and worse prognosis, respectively. All 269
mass-spectral features were used without any feature selection or deselection based on clinical data.
Test generation was carried out by using an approach which incorporates concepts from traditional
machine learning and deep learning and is designed for test development in cases with more measured
attributes than samples, minimizing the potential for overfitting and promoting the ability of the
resulting test to generalize to unseen datasets [15] (see Supplementary Materials including Figure S3).
This method splits the development cohort into training and test sets multiple times, generates a
classifier for each training set, and averages over the ensemble of training/test set splits. Reliable
performance estimates for the development cohort can therefore be obtained by classifying each sample
by using data generated only when it is in a test set and not used in training.

The classification algorithm within each training set split is constructed from the mass-spectral
features as a combination of many k-nearest neighbor classifiers (k = 9), which individually have at
least minimal power to stratify patients by overall survival. This combination is strongly regularized
to prevent overfitting to specific details of the training set. A semi-supervised approach, which allows
simultaneous refinement of the test and the classes used in its training, reveals the underlying structure
of the mass spectral data associated with the outcome [16], Figure S4. Full details of classifier training
are provided in the Supplementary Materials. This method of classifier development has been used
previously with Deep MALDI mass spectral data to create validated tests able to stratify outcomes for
melanoma patients treated with immunotherapy [34,35]. The parameters and all reference data for the
final classifier were generated solely on the development cohort and were then locked. Validation was
performed by using this classifier in the VC.
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4.4. Protein Set Enrichment Analysis (PSEA)

Gene set enrichment analysis methods were applied to protein expression data for the Reference
Sample Set, for which mass spectral data were also available, to investigate the biological underpinnings
of the test classifications [48]. Test classifications were generated for each sample in the Reference
Sample Set. Protein expression data for each sample in the Reference Sample Set were obtained
for a panel of 1305 known proteins (SOMAscan 1.3k, SomaLogic, Boulder, CO, USA). Protein sets
associated with relevant biological functions were established as the intersection of queries from
GeneOntology and UniProt databases and the measured proteins. (These are listed in the Supplementary
Materials.) Set enrichment methods used rank-based (Mann–Whitney) correlation of the 1305 measured
proteins with test classifications of the reference samples, to examine correlation of test classifications
with the selected biological functions. PSEA was implemented in C# following the approach of
Subramanian et al. [49], as adapted by Roder et al. [50], for increased power, to detect associations
and used p-values as defined therein. Briefly, the 1305 proteins were ranked based on the univariate
correlation of their expression with test classification. An enrichment score was calculated which
quantifies the enrichment in the rankings of the subset of the proteins related to a particular biological
process relative to the proteins not related to that process. To increase the statistical power to identify
associations between test classification and a biological process, the Reference Sample Set was divided
into two halves multiple times; the enrichment score was evaluated for each half and then averaged
over each half and each division. The p-values for association were determined by comparison with
the null distribution generated via permutation of the test classifications over samples. False discovery
rates were assessed by the method of Benjamini and Hochberg [51].

4.5. Statistics

Progression-free survival (PFS) was either measured from the time point of diagnosis (blood
collection) to the date of disease recurrence/progression or death, or censored at last follow-up time,
in the absence of either event. Overall survival (OS) was either measured from date of diagnosis to death,
or censored at last follow-up time. All statistical analyses, apart from the PSEA, were performed by
using SAS9.3 (SAS Institute, Cary, NC, USA) or PRISM (GraphPad, La Jolla, CA, USA). Survival plots
and medians were created by using Kaplan–Meier methods. Difference in outcome between subgroups
was assessed by using Cox proportional hazard p-values. The association between test classification
and categorical or continuous variables was assessed by Fisher’s exact test and the Mann–Whitney test,
respectively. The p-values were two-sided and uncorrected for multiple comparisons.

4.6. Data Availability

The Deep MALDI average spectra for all samples in this study are freely available at https:
//bitbucket.org/joannaroder/workspace/projects/OV.

5. Conclusions

This work highlights that, just like molecular markers of the tumor itself, the systemic condition
of a patient (partly reflected in proteomic patterns) also influences survival and therapy response and
could therefore be integrated into future processes of therapy planning.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/9/2519/s1,
Figure S1: Performance of the tests trained using data from (i) patients aged ≤ 55 years or (ii) patients aged
≥ 56 years. Figure S2: Example of defined features. Figure S3: Classifier development approach. Figure S4:
Process for the simultaneous refinement of training class labels and classifier. Table S1: Patient characteristics of
the development cohort by test classification, good or poor. Table S2: Patient characteristics of the younger patients
(age≤ 55) in the development cohort by test classification, good or poor. Table S3: Patient characteristics of the older
patients (age ≥ 56) in the development cohort by test classification, good or poor. Table S4: Patient characteristics
by test classification for the validation cohort. Table S5: Additional univariate and multivariate analyses in the
younger patients subgroup of the development cohort. Table S6: Additional multivariate analyses in the younger
patients subgroup of the validation cohort. Table S7: Concordance table of test classifications between two runs of

https://bitbucket.org/joannaroder/workspace/projects/OV
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the 34 samples from the development cohort. Table S8: Concordance table of test classifications between plasma
samples and serum samples for 37 patients in the development cohort. Table S9: PSEA assessment of association
of test classifications with various biological processes. Table S10: Points in m/Z used to align the raster spectra.
Table S11: Regions of spectrum used for first coarse normalization. Table S12: Regions of spectrum used for
second normalization. Table S13: m/Z positions used for alignment. Table S14: m/Z regions (features) used for
final normalization. Table S15: Definitions of features used in classifier development. References [52–55] are cited
in the supplementary materials.
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