7 research outputs found
The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease. © 2014 Porcel et al
Combined Pituitary Hormone Deficiency Due To Gross Deletions In The Pou1F1 (Pit-1) And Prop1 Genes
Pituitary development depends on a complex cascade of interacting transcription factors and signaling molecules. Lesions in this cascade lead to isolated or combined pituitary hormone deficiency (CPHD). The aim of this study was to identify copy number variants (CNVs) in genes known to cause CPHD and to determine their structure. We analyzed 70 CPHD patients from 64 families. Deletions were found in three Turkish families and one family from northern Iraq. In one family we identified a 4.96 kb deletion that comprises the first two exons of POU1F1. In three families a homozygous 15.9 kb deletion including complete PROP1 was discovered. Breakpoints map within highly homologous AluY sequences. Haplotype analysis revealed a shared haplotype of 350 kb among PROP1 deletion carriers. For the first time we were able to assign the boundaries of a previously reported PROP1 deletion. This gross deletion shows strong evidence to originate from a common ancestor in patients with Kurdish descent. No CNVs within LHX3, LHX4, HESX1, GH1 and GHRHR were found. Our data prove multiplex ligation-dependent probe amplification to be a valuable tool for the detection of CNVs as cause of pituitary insufficiencies and should be considered as an analytical method particularly in Kurdish patients.Wo