67 research outputs found

    Quantum gravity corrections to the Schwarzschild mass

    Get PDF
    Vacuum spherically symmetric Einstein gravity in N4N\ge 4 dimensions can be cast in a two-dimensional conformal nonlinear sigma model form by first integrating on the (N2)(N-2)-dimensional (hyper)sphere and then performing a canonical transformation. The conformal sigma model is described by two fields which are related to the Arnowitt-Deser-Misner mass and to the radius of the (N2)(N-2)-dimensional (hyper)sphere, respectively. By quantizing perturbatively the theory we estimate the quantum corrections to the ADM mass of a black hole.Comment: 18 pages, 8 figures, LaTeX2e, uses epsfig package, accepted for publication in Phys. Rev.

    Biharmonic pattern selection

    Full text link
    A new model to describe fractal growth is discussed which includes effects due to long-range coupling between displacements uu. The model is based on the biharmonic equation 4u=0\nabla^{4}u =0 in two-dimensional isotropic defect-free media as follows from the Kuramoto-Sivashinsky equation for pattern formation -or, alternatively, from the theory of elasticity. As a difference with Laplacian and Poisson growth models, in the new model the Laplacian of uu is neither zero nor proportional to uu. Its discretization allows to reproduce a transition from dense to multibranched growth at a point in which the growth velocity exhibits a minimum similarly to what occurs within Poisson growth in planar geometry. Furthermore, in circular geometry the transition point is estimated for the simplest case from the relation rL/e1/2r_{\ell}\approx L/e^{1/2} such that the trajectories become stable at the growing surfaces in a continuous limit. Hence, within the biharmonic growth model, this transition depends only on the system size LL and occurs approximately at a distance 60%60 \% far from a central seed particle. The influence of biharmonic patterns on the growth probability for each lattice site is also analysed.Comment: To appear in Phys. Rev. E. Copies upon request to [email protected]

    Ultracold Atoms in 1D Optical Lattices: Mean Field, Quantum Field, Computation, and Soliton Formation

    Full text link
    In this work, we highlight the correspondence between two descriptions of a system of ultracold bosons in a one-dimensional optical lattice potential: (1) the discrete nonlinear Schr\"{o}dinger equation, a discrete mean-field theory, and (2) the Bose-Hubbard Hamiltonian, a discrete quantum-field theory. The former is recovered from the latter in the limit of a product of local coherent states. Using a truncated form of these mean-field states as initial conditions, we build quantum analogs to the dark soliton solutions of the discrete nonlinear Schr\"{o}dinger equation and investigate their dynamical properties in the Bose-Hubbard Hamiltonian. We also discuss specifics of the numerical methods employed for both our mean-field and quantum calculations, where in the latter case we use the time-evolving block decimation algorithm due to Vidal.Comment: 14 pages, 2 figures; to appear in Journal of Mathematics and Computers in Simulatio

    Collisionless Relaxation in Galactic Dynamics and the Evolution of Long Range Order

    Get PDF
    This talk provides a critical assessment of collisionless galactic dynamics, focusing on the interpretation and limitations of the collisionless Boltzmann equation and the physical mechanisms associated with collisionless relaxation. Numerical and theoretical arguments are presented to motivate the idea that the evolution of a system far from equilibrium should be interpreted as involving nonlinear gravitational Landau damping, which implies a greater overall coherence and remembrance of initial conditions than is implicit in the conventional theory of violent relaxation.Comment: 20 pages, plain latex, no macros required, no figures a talk presented at the 1997 Florida Workshop on Nonlinear Astronomy and Physics, to appear in Annals of the New York Academy of Science

    Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development

    Get PDF
    Background: Coronaviruses pose a serious threat to global health as evidenced by Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and COVID-19. SARS Coronavirus (SARS-CoV), MERS Coronavirus (MERS-CoV), and the novel coronavirus, previously dubbed 2019-nCoV, and now officially named SARS-CoV-2, are the causative agents of the SARS, MERS, and COVID-19 disease outbreaks, respectively. Safe vaccines that rapidly induce potent and long-lasting virus-specific immune responses against these infectious agents are urgently needed

    LAr1-ND: Testing Neutrino Anomalies with Multiple LArTPC Detectors at Fermilab

    Get PDF
    This white paper describes LAr1-ND and the compelling physics it brings first in Phase 1 and next towards the full LAr1 program. In addition, LAr1-ND serves as a key step in the development toward large-scale LArTPC detectors. Its development goals will encompass testing existing and possibly innovative designs for LBNE while at the same time providing a training ground for teams working towards LBNE combining timely neutrino physics with experience in detector development

    A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns.

    Get PDF
    In cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA

    Oil futures and strategic stocks at sea

    No full text
    corecore