46 research outputs found

    Alkaline phosphatase activity in cheese as a tracer for cheese milk pasteurization

    Get PDF
    Abstract Alkaline phosphatase (ALP) activity is used throughout the world as a marker for the proper pasteurization of milk, to guarantee its hygienic safety. The Standard ISO 11816-2/IDF 155-2 describes the analysis of ALP in cheese. However, the method has been questioned in the past because there have sometimes been ambiguous results. The critical operations of the analytical procedure are more precisely defined and a zonal cheese sampling adopted. ALP inactivation is firstly evaluated in the relevant steps of controlled cheese makings of hard (Emmental), semi-hard (Raschera) and soft (Chaource) cheeses. Application of the improved procedure in over 700 samples of typical cheeses from France, Italy and Switzerland proved the applicability of the method. Based on this large study, a limit for ALP activity in cheese from pasteurized milk is proposed at 10 mU/g

    Influence of raw milk microflora and starter cultures in cheese on protein hydrolysis and peptide generation during digestion

    Get PDF
    Do bacterial strains in cheese have an impact on the protein hydrolysis during human digestion, and if so, does a higher microbial diversity lead to the generation of a higher number of different peptides after digestion?Cheese bacteria are responsible for the hydrolysis of proteins already during cheese ripening. These bacterial cultures are introduced at different steps of the cheese manufacturing process. First, the raw milk flora that is dependent on the milk heat treatment before the cheese manufacturing process, is a major source of a variety of bacteria. Second, starter cultures, needed for a successful acidification of the cheese curd are added to prevent side fermentations. Third, addition of cultures is made for improving flavor or accelerating the ripening process, depending on the type of cheese. Because of bacterial proteolytic activity, proteins in cheese are partially hydrolyzed, depending on the ripening time and are further digested by gastric and pancreatic proteases, after consumption, to the level of small peptides and free amino acids. In order to elucidate possible differences in proteolysis depending on the presence of different bacteria, Swiss Raclette cheeses were produced either from raw or pasteurized milk with or without addition of a proteolytic bacterial strains (Lactobacillus helveticus) and ripened during 120 days.The microbial diversity and the relative abundance of specific strains in the different cheeses was assessed after 24 hours, 80 and 120 days of cheese ripening by sequencing the hypervariable regions V1-V2 of the 16S rRNA genes. Moreover, protein hydrolysis in the different cheeses was analyzed with gel electrophoresis, mass spectrometry, and HPLC after in vitro digestion, applying a static (Infogest) and a dynamic (DIDGI®) oro-gastrointestinal in vitro digestion protocol. In order to gain information on the influence of bacterial strains on protein hydrolysis, the 16s meta-genomic and 16s meta-transcriptomic results were correlated with protein and peptide patterns

    Comparison of nutritional composition between plant-based drinks and cow’s milk

    Get PDF
    The high decline in liquid milk consumption in Western countries has been compensated by the increased consumption of processed dairyproducts and the rapidly increasing number of new plant-based beverages constantly introduced in the market, advertised as milk substitutes and placed on shelves near milk products. To provide better understanding about the nutritional value of these drinks compared with cow’s milk, 27 plant-based drinks of 8 different species and two milk samples were purchased from two big retailers in Switzerland, and their composition regarding protein, carbohydrate, fat, vitamin, and mineral contents and residue load [glyphosate, aminomethylphosphonic acid (AMPA), and arsenic] was analyzed quantitatively and qualitatively. Energy and nutrient intakes were calculated and compared with the dietary reference values for Germany, Austria and Switzerland (D-A-CH). In addition, the digestible indispensable amino acid score (DIAAS) was calculated to estimate the quality of the proteins. Milk contained more energy; fat; carbohydrate; vitamins C, B2, B12, and A; biotin; pantothenic acid; calcium; phosphorus; and iodine than most plant-based drinks. Soy drinks provided slightly more proteinand markedly more vitamins B1 and B6, folic acid, and vitamins E and D2 (with supplemented vitamin D2) and K1, magnesium, manganese, iron, and copper than milk and the other plant-based drinks. However, with the exception of cow’s milk and soy drinks, which had > 3% protein, most milk alternatives contained � 1% protein; therefore, they cannot be considered good protein sources. In regard to protein quality, milk was outstanding compared with all plant-based drinks and exhibited higher calculated DIAASs. Our results show that the analyzed plant-based drinks are not real alternatives to milk in terms of nutrient composition, even if the actual fortification is taken into account. Improved fortification is still an issue and can be optimized using the most bioavailable and soluble derivatives. Complete replacement of milk with plant-based drinks without adjusting the overall diet can lead to deficiencies of certain important nutrients in the long term

    Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling

    Get PDF
    Mutations of NPHS1 or NPHS2, the genes encoding nephrin and podocin, as well as the targeted disruption of CD2-associated protein (CD2AP), lead to heavy proteinuria, suggesting that all three proteins are essential for the integrity of glomerular podocytes, the visceral glomerular epithelial cells of the kidney. It has been speculated that these proteins participate in common signaling pathways; however, it has remained unclear which signaling proteins are actually recruited by the slit diaphragm protein complex in vivo. We demonstrate that both nephrin and CD2AP interact with the p85 regulatory subunit of phosphoinositide 3-OH kinase (PI3K) in vivo, recruit PI3K to the plasma membrane, and, together with podocin, stimulate PI3K-dependent AKT signaling in podocytes. Using two-dimensional gel analysis in combination with a phosphoserine-specific antiserum, we demonstrate that the nephrin-induced AKT mediates phosphorylation of several target proteins in podocytes. One such target is Bad; its phosphorylation and inactivation by 14-3-3 protects podocytes against detachment-induced cell death, suggesting that the nephrin-CD2AP-mediated AKT activity can regulate complex biological programs. Our findings reveal a novel role for the slit diaphragm proteins nephrin, CD2AP, and podocin and demonstrate that these three proteins, in addition to their structural functions, initiate PI3K/AKT-dependent signal transduction in glomerular podocytes

    The NutriChip project - translating technology into nutritional knowledge

    Get PDF
    Advances in food transformation have dramatically increased the diversity of products on the market and, consequently, exposed consumers to a complex spectrum of bioactive nutrients whose potential risks and benefits have mostly not been confidently demonstrated. Therefore, tools are needed to efficiently screen products for selected physiological properties before they enter the market. NutriChip is an interdisciplinary modular project funded by the Swiss programme Nano-Tera, which groups scientists from several areas of research with the aim of developing analytical strategies that will enable functional screening of foods. The project focuses on postprandial inflammatory stress, which potentially contributes to the development of chronic inflammatory diseases. The first module of the NutriChip project is composed of three in vitro biochemical steps that mimic the digestion process, intestinal absorption, and subsequent modulation of immune cells by the bioavailable nutrients. The second module is a miniaturised form of the first module (gut-on-a-chip) that integrates a microfluidic-based cell co-culture system and super-resolution imaging technologies to provide a physiologically relevant fluid flow environment and allows sensitive real-time analysis of the products screened in vitro. The third module aims at validating the in vitro screening model by assessing the nutritional properties of selected food products in humans. Because of the immunomodulatory properties of milk as well as its amenability to technological transformation, dairy products have been selected as model foods. The NutriChip project reflects the opening of food and nutrition sciences to state-of-the-art technologies, a key step in the translation of transdisciplinary knowledge into nutritional advic

    Elucidation of the Bovine Intramammary Bacteriome and Resistome from healthy cows of Swiss dairy farms in the Canton Tessin

    Get PDF
    Healthy, untreated cows of nine dairy herds from the Swiss Canton Tessin were analyzed three times within one year to identify the most abundant species of the intramammary bacteriome. Aseptically collected milk samples were cultured and bacteria identified using MALDI-TOF. Of 256 cows analyzed, 96% were bacteriologically positive and 80% of the 1,024 quarters were positive for at least one bacterial species. 84.5% of the quarters were healthy with somatic cell counts (SCC) < 200,000 cells/mL, whereas 15.5% of the quarters showed a subclinical mastitis (SCC ≥ 200,000 cells/mL). We could assign 1,288 isolates to 104 different bacterial species including 23 predominant species. Non-aureus staphylococci and mammaliicocci (NASM) were most prevalent (14 different species; 73.5% quarters). Staphylococcus xylosus and Mammaliicoccus sciuri accounted for 74.7% of all NASM isolates. To describe the intramammary resistome, 350 isolates of the predominant species were selected and subjected to short-read whole genome sequencing (WGS) and phenotypic antibiotic resistance profiling. While complete genomes of eight type strains were available, the remaining 15 were de novo assembled with long reads as a resource for the community. The 23 complete genomes served for reference-based assembly of the Illumina WGS data. Both chromosomes and mobile genetic elements were examined for antibiotic resistance genes (ARGs) using in-house and online software tools. ARGs were then correlated with phenotypic antibiotic resistance data from minimum inhibitory concentration (MIC). Phenotypic and genomic antimicrobial resistance was isolate-specific. Resistance to clindamycin and oxacillin was most frequently observed (65 and 30%) in Staphylococcus xylosus but could not be linked to chromosomal or plasmid-borne ARGs. However, in several cases, the observed antimicrobial resistance could be explained by the presence of mobile genetic elements like tetK carried on small plasmids. This represents a possible mechanism of transfer between non-pathogenic bacteria and pathogens of the mammary gland within and between herds. The-to our knowledge-most extensive bacteriome reported and the first attempt to link it with the resistome promise to profoundly affect veterinary bacteriology in the future and are highly relevant in a One Health context, in particular for mastitis, the treatment of which still heavily relies on antibiotics

    Standardization of in vitro digestibility and DIAAS method based on the static INFOGEST protocol

    Get PDF
    Background: The FAO recommends the digestible indispensable amino acid score (DIAAS) as the measure for protein quality, for which the true ileal digestibility needs to be assessed in humans or pigs. However, due to high costs and ethical concerns, the FAO strongly encourages as well the development of validated in vitro methods, which complement the in vivo experiments. Method: Recently, an in vitro workflow, based on the validated static INFOGEST protocol, was developed and compared towards in vivo data. In parallel to the validation with in vivo data, the repeatability and reproducibility of the in vitro protocol were tested in an international ring trial (RT) with the aim to establish an international ISO standard method within the International Dairy Federation (IDF). Five different dairy products (skim milk powder, whole milk powder, whey protein isolate, yoghurt, and cheese) were analyzed in 32 different laboratories from 18 different countries, across 4 continents. Results: in vitro protein digestibilities based on Nitrogen, free R-NH2, and total amino acids as well as DIAAS values were calculated and compared to in vivo data, where available. Conclusion: The in vitro method is suited for quantification of digestibility and will be further implemented to other food matricesinfo:eu-repo/semantics/publishedVersio

    The harmonized INFOGEST in vitro digestion method: From knowledge to action

    Get PDF
    Within the active field of in vitro digestion in food research, the COST Action INFOGEST aimed to harmonize in vitro protocols simulating human digestion on the basis of physiologically inferred conditions. A harmonized static in vitro digestion (IVD) method was recently published as a primary output from this network. To validate this protocol, inter-laboratory trials were conducted within the INFOGEST network. A first study was performed using skim milk powder (SMP) as a model food and served to compare the different in-house digestion protocols used among the INFOGEST members. In a second inter-laboratory study applying the harmonized protocol, the degree of consistency in protein hydrolysis was investigated. Analysis of the hydrolyzed proteins, after the gastric and intestinal phases, showed that caseins were mainly hydrolyzed during the gastric phase, whereas β-lactoglobulin was, as previously shown, resistant to pepsin. Moreover, generation of free amino acids occurred mainly during the intestinal phase.The study also showed that a few critical steps were responsible for the remaining inter-laboratory variability. The largest deviations arose from the determination of pepsin activity. Therefore, this step was further clarified, harmonized, and implemented in a third inter-laboratory study.The present work gives an overview of all three inter-laboratory studies, showing that the IVD INFOGEST method has led to an increased consistency that enables a better comparability of in vitro digestion studies in the future
    corecore