33 research outputs found

    Plants with less Chlorophyll: a global change perspective

    Get PDF
    The necessary reduction of greenhouse gas (GHG) emissions may lead in the future to an increase in solar irradiance (solar brightening). Anthropogenic aerosols (and their precursors) that cause solar dimming are in fact often co\u2010emitted with GHGs. While the reduction of GHG emissions is expected to slow down the ongoing increase in the greenhouse effect, an increased surface irradiance due to reduced atmospheric aerosol load might occur in the most populated areas of the earth. Increased irradiance may lead to air warming, favour the occurrence of heatwaves and increase the evaporative demand of the atmosphere. This is why effective and sustainable solar radiation management strategies to reflect more light back to space should be designed, tested and implemented together with GHG emission mitigation. Here we propose that new plants (crops, orchards and forests) with low\u2010chlorophyll (Chl) content may provide a realistic, sustainable and relatively simple solution to increase surface reflectance of large geographical areas via changes in surface albedo. This may finally offset all or part of the expected local solar brightening. While high\u2010Chl content provides substantial competitive advantages to plants growing in their natural environment, new plants with low\u2010Chl content may be successfully used in agriculture and silviculture and be as productive as the green wildtypes (or even more). The most appropriate strategies to obtain highly productive and highly reflective plants are discussed in this paper and their mitigation potential is examined together with the challenges associated with their introduction in agriculture

    How do variations in the temporal distribution of rainfall events affect ecosystem fluxes in seasonally water-limited Northern Hemisphere shrublands and forests?

    Get PDF
    As a result of climate change, rainfall regimes became more extreme over the course of the 20th century, characterised by fewer and larger rainfall events. Such changes are expected to continue throughout the current century. The effect of changes in the 5 temporal distribution of rainfall on ecosystem carbon fluxes is poorly understood, with most available information coming from experimental studies of grassland ecosystems. Here, continuous measurements of ecosystem carbon fluxes and precipitation from the worldwide FLUXNET network of eddy-covariance sites are exploited to investigate the effects of differences in rainfall distribution on the carbon balance of seasonally water10 limited shrubland and forest sites. Once the strong dependence of ecosystem fluxes on total annual rainfall amount is accounted for, results show that sites with more extreme rainfall distributions have significantly lower gross productivity, slightly lower ecosystem respiration and consequently a smaller net ecosystem productivity.JRC.H.7-Climate Risk Managemen

    Fate of soil organic carbon and polycyclic aromatic hydrocarbons in a vineyard soil treated with biochar

    Get PDF
    The effect of biochar addition on the levels of black carbon (BC) and polcyclic aromatic hydrocarbons (PAHs) in a vineyard soil in central Italy was investigated within a two year period. Hydropyrolysis (HyPy) was used to determine the contents of BC (BCHyPy) in the amended and control soils while the hydrocarbon composition of the semi-labile (non-BCHyPy) fraction released by HyPy was determined by gas chromatography-mass spectrometry, together with the solvent-extractable PAHs. The concentrations of these three polycyclic aromatic carbon reservoirs, changed and impacted differently on the soil organic carbon over the period of the trial. The addition of biochar (33 ton dry biochar ha-1) gave rise to a sharp increase in soil organic carbon which could be accounted for by an increase of BCHyPy. Over time, the concentration of BCHyPy decreased significantly from 36 to 23 mg g-1, and as a carbon percentage from 79% to 61%. No clear time trends were observed for the non-BCHyPy PAHs varying from 39 to 34 µg g-1 in treated soils, not significantly different from control soils. However, the concentrations of extractable PAHs increased markedly in the amended soils, and decreased with time from 153 to 78 ng g-1 remaining always higher than those in untreated soil. The extent of the BCHyPy loss was more compatible with physical rather than chemical processes

    Retrieving soil moisture in rainfed and irrigated fields using Sentinel-2 observations and a modified OPTRAM approach

    Get PDF
    Abstract Surface soil water content plays an important role in driving the exchange of latent and sensible heat between the atmosphere and land surface through transpiration and evaporation processes, regulating key physiological processes affecting plants growth. Given the high impact of water scarcity on yields, and of irrigated agriculture on the overall withdrawal rate of freshwater, it is important to define models that help to improve water resources management for agricultural purposes, and to optimize rainfed crop yield. Recent advances in satellite-based remote sensing have led to valuable solutions to estimate soil water content based on microwave or optical/thermal-infrared data. This study aims at improving soil water content estimation at high spatial and temporal resolution, by means of the Optical Trapezoid Model (OPTRAM) driven by Copernicus Sentinel-2 data. Two different model variations were considered, based on linear and nonlinear parameters constraints, and validated against in situ soil water content measurements made with time domain reflectometry (TDR) on irrigated maize in central Italy and on rainfed maize and pasture in northern Italy. For the first site the non-linear model shows a better correlation between measured and estimated soil water content values (r = 0.80) compared to the linear model (r = 0.73). In both cases the modeled soil moisture tends to overestimate the measured values at medium to high water content level, while both models underestimate soil moisture at low water content level. Estimated versus measured normalized surface soil water for rainfed pasture plots from nonlinear OPTRAM parametrized based on irrigated maize parameterization (SIM1), and site-specific parametrization for rainfed pasture (SIM2), indicate that both models (SIM1 and SIM2) are comparable for rotational grazing pasture (RMSEsim1 = 0.0581 vs. RMSEsim2 = 0.0485 cm3 cm-3) and the continuous grazing pasture (RMSEsim1 = 0.0485 vs. RMSEsim2 = 0.0602 cm3 cm-3), while for the rainfed maize plots SIM1 shows lower RMSE (average for all plots RMSE = 0.0542 cm3 cm-3) compared to the site-specific calibration model (SIM2 – average for all plots RMSE = 0.0645 cm3 cm-3). Finally, OPTRAM estimations are close to in situ measurement values while Surface Soil Moisture at 1 km (SSM1 km) tends to underestimate the measurements during maize crop growing season. Soil moisture retrieval from high-resolution Sentinel-2 optical images allows water stress conditions to be effectively mapped, supporting decision making in irrigation scheduling and other crop management

    Biochar standardization and legislation harmonization

    Get PDF
    It is a relatively new concept to use biochar as soil amendment and for climate change mitigation. For this reason, the national and supranational legislation in the EU is not yet adequately prepared to regulate both the production and the application of biochar. Driven by this “regulatory gap”, voluntary biochar quality standards have been formed in Europe with the European Biochar Certificate, in the UK with the Biochar Quality Mandate and in the USA with the IBI Standard which is intended to be used internationally. In parallel to this, biochar producers and biochar users in a number of EU countries were partly successful in fitting the new biochar product into the existing national legislation for fertilisers, soil improvers and composts. The intended revision of the EC Regulation 2003/2003 on fertilisers offers the opportunity to regulate the use of biochar at the EU level. This publication summarizes the efforts on biochar standardization which have been carried out by voluntary products standards and illustrates existing legislation in EU member states, which apply to the production and use of biochar. It describes existing and planned EU regulations, which impact biochar applications and it develops recommendations on the harmonization of biochar legislation in the EU.  First published online: 24 Jan 201

    AIRO Breast Cancer Group Best Clinical Practice 2022 Update

    Get PDF
    Introduction: Breast cancer is the most common tumor in women and represents the leading cause of cancer death. Radiation therapy plays a key-role in the treatment of all breast cancer stages. Therefore, the adoption of evidence-based treatments is warranted, to ensure equity of access and standardization of care in clinical practice.Method: This national document on the highest evidence-based available data was developed and endorsed by the Italian Association of Radiation and Clinical Oncology (AIRO) Breast Cancer Group.We analyzed literature data regarding breast radiation therapy, using the SIGN (Scottish Intercollegiate Guidelines Network) methodology (www.sign.ac.uk). Updated findings from the literature were examined, including the highest levels of evidence (meta-analyses, randomized trials, and international guidelines) with a significant impact on clinical practice. The document deals with the role of radiation therapy in the treatment of primary breast cancer, local relapse, and metastatic disease, with focus on diagnosis, staging, local and systemic therapies, and follow up. Information is given on indications, techniques, total doses, and fractionations.Results: An extensive literature review from 2013 to 2021 was performed. The work was organized according to a general index of different topics and most chapters included individual questions and, when possible, synoptic and summary tables. Indications for radiation therapy in breast cancer were examined and integrated with other oncological treatments. A total of 50 questions were analyzed and answered.Four large areas of interest were investigated: (1) general strategy (multidisciplinary approach, contraindications, preliminary assessments, staging and management of patients with electronic devices); (2) systemic therapy (primary, adjuvant, in metastatic setting); (3) clinical aspects (invasive, non-invasive and micro-invasive carcinoma; particular situations such as young and elderly patients, breast cancer in males and cancer during pregnancy; follow up with possible acute and late toxicities; loco-regional relapse and metastatic disease); (4) technical aspects (radiation after conservative surgery or mastectomy, indications for boost, lymph node radiotherapy and partial breast irradiation).Appendixes about tumor bed boost and breast and lymph nodes contouring were implemented, including a dedicated web application. The scientific work was reviewed and validated by an expert group of breast cancer key-opinion leaders.Conclusions: Optimal breast cancer management requires a multidisciplinary approach sharing therapeutic strategies with the other involved specialists and the patient, within a coordinated and dedicated clinical path. In recent years, the high-level quality radiation therapy has shown a significant impact on local control and survival of breast cancer patients. Therefore, it is necessary to offer and guarantee accurate treatments according to the best standards of evidence-based medicine

    Mimicking biochar-albedo feedback in complex Mediterranean agricultural landscapes

    Get PDF
    ncorporation of charcoal produced by biomass pyrolysis (biochar) in agricultural soils is a potentially sustainable strategy for climate change mitigation. However, some side effects of large-scale biochar application need to be investigated. In particular a massive use of a low-reflecting material on large cropland areas may impact the climate via changes in surface albedo. Twelve years of MODIS-derived albedo data were analysed for three pairs of selected agricultural sites in central Italy. In each pair bright and dark coloured soil were identified, mimicking the effect of biochar application on the land surface albedo of complex agricultural landscapes. Over this period vegetation canopies never completely masked differences in background soil colour. This soil signal, expressed as an albedo difference, induced a local instantaneous radiative forcing of up to 4.7 W m(-2) during periods of high solar irradiance. Biochar mitigation potential might therefore be reduced up to similar to 30%. This study proves the importance of accounting for crop phenology and crop management when assessing biochar mitigation potential and provides more insights into the analysis of its environmental feedback

    Individual plant definition and missing plant characterization in vineyards from high-resolution UAV imagery

    Get PDF
    In the last few years, high-resolution imaging of vineyards, obtained by unmanned aerial vehicle recognitions, has provided new opportunities to obtain valuable information for precision farming applications. While available semi-automatic image processing algorithms are now able to detect parcels and extract vine rows from aerial images, the identification of single plant inside the rows is a problem still unaddressed. This study presents a new methodology for the segmentation of vine rows in virtual shapes, each representing a real plant. From the virtual shapes, an extensive set of features is discussed, extracted and coupled to a statistical classifier, to evaluate its performance in missing plant detection within a vineyard parcel. Passing from continuous images to a discrete set of individual plants results in a crucial simplification of the statistical investigation of the problem

    Combination of Biological Therapy in Severe Asthma: Where We Are?

    No full text
    Biological drugs have revolutionized the management of severe asthma. However, a variable number of patients remain uncontrolled or only partially controlled even after the appropriate administration of a biologic agent. The combination of two biologics may target different inflammatory pathways, and it has been used in patients suffering from uncontrolled severe asthma with evidence of both allergic and eosinophilic phenotypes or severe asthma and type2 comorbidities. Combination therapy has also been used to handle anti-IL4/13R induced hypereosinophilia. There is insufficient data on combining biologics for the treatment of severe uncontrolled asthma and type 2 comorbidities, also because of the high cost, and currently no guideline recommends dual biologic therapy. A systematic search was performed using the Medline and Scopus databases. Published data on concurrent administration of two biological drugs in severe, uncontrolled asthma patients has been reported in 28 real-world studies and 1 clinical trial. Data extraction was followed by a descriptive and narrative synthesis of the findings. Future studies should be conducted to further assess the safety, efficacy, and cost-effectiveness of this therapeutic strategy
    corecore