12 research outputs found

    The role of nuclear envelope associated proteins in early HIV 1 infection steps

    Get PDF
    There is increasing evidence that HIV-1 may interact with components associated with the nuclear envelope (NE) during the infection of dividing and non-dividing cells. This ensures correct nuclear import and integration, suggesting that NE may be of greater importance than is currently appreciated. Previous studies have shown that HIV 1 interacts with the nuclear pore complex, followed by nuclear import of the pre-integration complex and preferential integration into genomic areas that are topologically in close proximity to the inner nuclear membrane. To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. Two nuclear membrane associated proteins SUN1/UNC84A and SUN2/UNC84B, members of the Linker of Nucleoskeleton and Cytoskeleton complex, were shown to efficiently block nuclear import of certain HIV-1 laboratory strains (HIV-1NL4.3 and HIV-1IIIB) as well as natural strains upon overexpression. The amino-terminal 85-90 amino acid residues were identified as being required for the SUN1-mediated block and it was further demonstrated that the amino-terminal domains of SUN1 and SUN2 interact with HIV-1 in a capsid (CA)-specific way. To test whether depletion of endogenous SUN proteins causes differences in HIV-1 infection, SUN1-/- and SUN2-/- cells were generated with CRISPR/Cas9 and it was found that SUN1 absence did not have any detectable effect on HIV-1 infectivity, whereas the loss of SUN2 resulted in a modest suppressive effect in the accumulation of viral cDNA in the nucleus. The analysis with HIV 2 and other retroviruses suggests that SUN2 gene disruption affects HIV 1 specifically and does not involve any unspecific block to nuclear import. This block to infection was further analyzed in U87MG CD4 / CXCR4 cells with shRNA-reduced SUN2 expression. In this case, the reduction of SUN2 levels resulted in a 5-fold decrease in HIV-1 infection after 24h, in comparison to control cells while infection increased to wild type levels 48h post infection. Overall, the data suggest that SUN2 may help promote the early stages of HIV-1 infection, while the contribution of SUN1 needs to be further investigated. The role of the CA protein and its connection to IFN-α-induced suppression was also investigated, by analyzing the infectivities of HIV-1 CA mutants N74D, A105T, as well as P90A. Despite their relative resistance to ectopically expressed MX2, these CA mutants showed an increased sensitivity to the IFN-α-induced post entry block, which was not dependent on MX2 antiviral activity. The data suggests that CA protein and the capsid core may protect incoming HIV-1 nucleic acids not only from being detected by cytoplasmic DNA sensors, but also from IFN-α-induced effectors, thereby providing dual protection against host defense mechanism

    Course and Lethality of SARS-CoV2 Epidemic in Nursing Homes after Vaccination in Florence, Italy

    Get PDF
    Evidence on the effectiveness of SARS-CoV-2 vaccines in nursing home (NHs) residents is limited. We examined the impact of the BNT162b2 mRNA SARS-CoV-2 vaccine on the course of the epidemic in NHs in the Florence Health District, Italy, before and after vaccination. Moreover, we assessed survival and hospitalization by vaccination status in SARS-CoV-2-positive cases occurring during the post-vaccination period. We calculated the weekly infection rates during the pre-vaccination (1 October–26 December 2020) and post-vaccination period (27 December 2020–31 March 2021). Cox analysis was used to analyze survival by vaccination status. The study involved 3730 residents (mean age 84, 69% female). Weekly infection rates fluctuated during the pre-vaccination period (1.8%–6.5%) and dropped to zero during the post-vaccination period. Nine unvaccinated (UN), 56 partially vaccinated (PV) and 35 fully vaccinated (FV) residents tested SARS-CoV-2+ during the post-vaccination period. FV showed significantly lower hospitalization and mortality rates than PV and UV (hospitalization: FV 3%, PV 14%, UV 33%; mortality: FV 6%, PV 18%, UV 56%). The death risk was 84% and 96% lower in PV (HR 0.157, 95%CI 0.049–0.491) and FV (HR 0.037, 95%CI 0.006–0.223) versus UV. SARS-CoV-2 vaccination was followed by a marked decline in infection rates and was associated with lower morbidity and mortality among infected NH residents

    Effects of inner nuclear membrane proteins SUN1/UNC-84A and SUN2/UNC- 84B on the early steps of HIV-1 infection

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) infection of dividing and nondividing cells involves regulatory interactions with the nuclear pore complex (NPC), followed by translocation to the nucleus and preferential integration into genomic areas in proximity to the inner nuclear membrane (INM). To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. We found that the integral transmembrane proteins SUN1/UNC84A and SUN2/UNC84B are potent or modest inhibitors of HIV-1 infection, respectively, and that suppression corresponds to defects in the accumulation of viral cDNA in the nucleus. While laboratory strains (HIV-1NL4.3 and HIV-1IIIB) are sensitive to SUN1-mediated inhibition, the transmitted founder viruses RHPA and ZM247 are largely resistant. Using chimeric viruses, we identified the HIV-1 capsid (CA) protein as a major determinant of sensitivity to SUN1, and in vitro-assembled capsid-nucleocapsid (CANC) nanotubes captured SUN1 and SUN2 from cell lysates. Finally, we generated SUN1−/− and SUN2−/− cells by using CRISPR/Cas9 and found that the loss of SUN1 had no effect on HIV-1 infectivity, whereas the loss of SUN2 had a modest suppressive effect. Taken together, these observations suggest that SUN1 and SUN2 may function redundantly to modulate postentry, nuclear-associated steps of HIV-1 infection. IMPORTANCE HIV-1 causes more than 1 million deaths per year. The life cycle of HIV-1 has been studied extensively, yet important steps that occur between viral capsid release into the cytoplasm and the expression of viral genes remain elusive. We propose here that the INM components SUN1 and SUN2, two members of the linker of nucleoskeleton and cytoskeleton (LINC) complex, may interact with incoming HIV-1 replication complexes and affect key steps of infection. While overexpression of these proteins reduces HIV-1 infection, disruption of the individual SUN2 and SUN1 genes leads to a mild reduction or no effect on infectivity, respectively. We speculate that SUN1/SUN2 may function redundantly in early HIV-1 infection steps and therefore influence HIV-1 replication and pathogenesis

    Minor capsid protein L2 polytope induces broad protection against oncogenic and mucosal human papillomaviruses

    No full text
    The amino terminus of the human papillomavirus (HPV) minor capsid protein L2 contains a major cross-neutralization epitope which provides the basis for the development of a broadly protecting HPV vaccine. A wide range of protection against different HPV types would eliminate one of the major drawbacks of the commercial, L1-based prophylactic vaccines. Previously, we have reported that insertion of the L2 epitope into a scaffold composed of bacterial thioredoxin protein generates a potent antigen inducing comprehensive protection against different animal and human papillomaviruses. We also reported, however, that although protection is broad, some oncogenic HPV types escape the neutralizing antibody response, if L2 epitopes from single HPV types are used as immunogen. We were able to compensate for this by applying a mix of thioredoxin proteins carrying L2 epitopes from HPV16, -31, and -51. As the development of a cost-efficient HPV prophylactic vaccines is one of our objectives, this approach is not feasible as it requires the development of multiple good manufacturing production processes in combination with a complex vaccine formulation. Here, we report the development of a thermostable thioredoxin-based single-peptide vaccine carrying an L2 polytope of up to 11 different HPV types. The L2 polytope antigens have excellent abilities in respect to broadness of protection and robustness of induced immune responses. To further increase immunogenicity, we fused the thioredoxin L2 polytope antigen with a heptamerization domain. In the final vaccine design, we achieve protective responses against all 14 oncogenic HPV types that we have analyzed plus the low-risk HPVs 6 and 11 and a number of cutaneous HPVs

    Minor Capsid Protein L2 Polytope Induces Broad Protection against Oncogenic and Mucosal Human Papillomaviruses

    No full text
    The amino terminus of the human papillomavirus (HPV) minor capsid protein L2 contains a major cross-neutralization epitope which provides the basis for the development of a broadly protecting HPV vaccine. A wide range of protection against different HPV types would eliminate one of the major drawbacks of the commercial, L1-based prophylactic vaccines. Previously, we have reported that insertion of the L2 epitope into a scaffold composed of bacterial thioredoxin protein generates a potent antigen inducing comprehensive protection against different animal and human papillomaviruses. We also reported, however, that although protection is broad, some oncogenic HPV types escape the neutralizing antibody response, if L2 epitopes from single HPV types are used as immunogen. We were able to compensate for this by applying a mix of thioredoxin proteins carrying L2 epitopes from HPV16, -31, and -51. As the development of a cost-efficient HPV prophylactic vaccines is one of our objectives, this approach is not feasible as it requires the development of multiple good manufacturing production processes in combination with a complex vaccine formulation. Here, we report the development of a thermostable thioredoxin-based single-peptide vaccine carrying an L2 polytope of up to 11 different HPV types. The L2 polytope antigens have excellent abilities in respect to broadness of protection and robustness of induced immune responses. To further increase immunogenicity, we fused the thioredoxin L2 polytope antigen with a heptamerization domain. In the final vaccine design, we achieve protective responses against all 14 oncogenic HPV types that we have analyzed plus the low-risk HPVs 6 and 11 and a number of cutaneous HPVs

    Complex interplay between HIV-1 capsid and MX2-independent alpha interferon-induced antiviral factors

    Get PDF
    Type I interferons (IFNs), including IFN-α, upregulate an array of IFN-stimulated genes (ISGs) and potently suppress Human immunodeficiency virus type 1 (HIV-1) infectivity in CD4(+) T cells, monocyte-derived macrophages, and dendritic cells. Recently, we and others identified ISG myxovirus resistance 2 (MX2) as an inhibitor of HIV-1 nuclear entry. However, additional antiviral blocks exist upstream of nuclear import, but the ISGs that suppress infection, e.g., prior to (or during) reverse transcription, remain to be defined. We show here that the HIV-1 CA mutations N74D and A105T, both of which allow escape from inhibition by MX2 and the truncated version of cleavage and polyadenylation specific factor 6 (CPSF6), as well as the cyclophilin A (CypA)-binding loop mutation P90A, all increase sensitivity to IFN-α-mediated inhibition. Using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology, we demonstrate that the IFN-α hypersensitivity of these mutants in THP-1 cells is independent of MX2 or CPSF6. As expected, CypA depletion had no additional effect on the behavior of the P90A mutant but modestly increased the IFN-α sensitivity of wild-type virus. Interestingly, the infectivity of wild-type or P90A virus could be rescued from the MX2-independent IFN-α-induced blocks in THP-1 cells by treatment with cyclosporine (Cs) or its nonimmunosuppressive analogue SDZ-NIM811, indicating that Cs-sensitive host cell cyclophilins other than CypA contribute to the activity of IFN-α-induced blocks. We propose that cellular interactions with incoming HIV-1 capsids help shield the virus from recognition by antiviral effector mechanisms. Thus, the CA protein is a fulcrum for the dynamic interplay between cell-encoded functions that inhibit or promote HIV-1 infection
    corecore