10 research outputs found

    Targeting of the CD80/86 proinflammatory axis as a therapeutic strategy to prevent severe COVID-19

    Get PDF
    Coronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Malalties inflamatĂČries; IdentificaciĂł de l'objectiu; InfecciĂł viralCoronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Enfermedades inflamatorias; IdentificaciĂłn del objetivo; InfecciĂłn viralCoronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Inflammatory diseases; Target identification; Viral infectionAn excessive immune response known as cytokine storm is the hallmark of severe COVID-19. The cause of this cytokine rampage is yet not known. Based on recent epidemiological evidence, we hypothesized that CD80/86 signaling is essential for this hyperinflammation, and that blocking this proinflammatory axis could be an effective therapeutic approach to protect against severe COVID-19. Here we provide exploratory evidence that abatacept, a drug that blocks CD80/86 co-stimulation, produces changes at the systemic level that are highly antagonistic of the proinflammatory processes elicited by COVID-19. Using RNA-seq from blood samples from a longitudinal cohort of n = 38 rheumatic patients treated with abatacept, we determined the immunological processes that are significantly regulated by this treatment. We then analyzed available blood RNA-seq from two COVID19 patient cohorts, a very early cohort from the epicenter of the pandemic in China (n = 3 COVID-19 cases and n = 3 controls), and a recent and larger cohort from the USA (n = 49 severe and n = 51 mild COVD-19 patients). We found a highly significant antagonism between SARS-CoV-2 infection and COVID-19 severity with the systemic response to abatacept. Analysis of previous single-cell RNA-seq data from bronchoalveolar lavage fluid from mild and severe COVID-19 patients and controls, reinforce the implication of the CD80/86 proinflammatory axis. Our functional results further support abatacept as a candidate therapeutic approach to prevent severe COVID-19.The PACTABA project was funded Bristol-Myers Squibb. We thank all participants from the PACTABA study for their collaboration. AJ and SM are supported by the DoCTIS project funded by the European Union’s H2020 programme (Grant #848028). This work was supported by funds from the Vall d’Hebron Hospital Research Institute and from IMIDomics S.L. We thank Dr Ariel Jaitovich (Albany Medical Centre, USA) for providing additional clinical data on the late COVID-19 cohort

    Longitudinal analysis of blood DNA methylation identifies mechanisms of response to tumor necrosis factor inhibitor therapy in rheumatoid arthritis

    Get PDF
    Epigenetics; Rheumatoid arthritis; Treatment responseEpigenÚtica; Artritis reumatoide; Resposta al tractamentEpigenética; Artritis reumatoide; Respuesta al tratamientoBackground Rheumatoid arthritis (RA) is a chronic, immune-mediated inflammatory disease of the joints that has been associated with variation in the peripheral blood methylome. In this study, we aim to identify epigenetic variation that is associated with the response to tumor necrosis factor inhibitor (TNFi) therapy. Methods Peripheral blood genome-wide DNA methylation profiles were analyzed in a discovery cohort of 62 RA patients at baseline and at week 12 of TNFi therapy. DNA methylation of individual CpG sites and enrichment of biological pathways were evaluated for their association with drug response. Using a novel cell deconvolution approach, altered DNA methylation associated with TNFi response was also tested in the six main immune cell types in blood. Validation of the results was performed in an independent longitudinal cohort of 60 RA patients. Findings Treatment with TNFi was associated with significant longitudinal peripheral blood methylation changes in biological pathways related to RA (FDR<0.05). 139 biological functions were modified by therapy, with methylation levels changing systematically towards a signature similar to that of healthy controls. Differences in the methylation profile of T cell activation and differentiation, GTPase-mediated signaling, and actin filament organization pathways were associated with the clinical response to therapy. Cell type deconvolution analysis identified CpG sites in CD4+T, NK, neutrophils and monocytes that were significantly associated with the response to TNFi. Interpretation Our results show that treatment with TNFi restores homeostatic blood methylation in RA. The clinical response to TNFi is associated to methylation variation in specific biological pathways, and it involves cells from both the innate and adaptive immune systems.This study was funded by the Instituto de Salud Carlos III

    Interactions between rheumatoid arthritis antibodies are associated with the response to anti-tumor necrosis factor therapy

    Get PDF
    Terapia anti TNF; Autoanticuerpos; Artritis reumatoideTeràpia anti TNF; Autoanticossos; Artritis reumatoideAnti-TNF therapy; Autoantibodies; Rheumatoid arthritisBackground Blocking of the Tumor Necrosis Factor (TNF) activity is a successful therapeutic approach for 50–60% of rheumatoid arthritis (RA) patients. However, there are yet no biomarkers to stratify patients for anti-TNF therapy. Rheumatoid factor (RF) and anti-cyclic-citrullinated antibodies (anti-CCP) have been evaluated as biomarkers of response but the results have shown limited consistency. Anti-carbamylated protein (anti-CarP) and anti-peptidylarginine deiminase type 4 (anti-PAD4) antibodies have been much less studied. Despite being linked to common immune processes, the interaction between these markers has not been evaluated yet. Our aim was to analyze the interaction between these four antibodies in relation to the response to anti-TNF therapy. Methods For this objective, a prospective cohort of n = 80 RA patients starting anti-TNF therapy was recruited. Serum determinations at baseline were performed for RF, anti-CCP, anti-CarP and anti-PAD4 antibodies using enzyme-linked immunosorbent assays (ELISA). The clinical response to anti-TNF therapy was determined at week 12 using the change in DAS28 score. Association was performed using multivariate linear regression adjusting for baseline DAS28, sex and age. Results The interaction between pairs of antibodies was tested by the addition of an interaction term. We found two highly significant antibody interactions associated with treatment response: anti-CarP with anti-PAD4 (p = 0.0062), and anti-CCP with RF (p = 0.00068). The latter antibody interaction was replicated in an independent retrospective cohort of RA patients (n = 199, p = 0.04). Conclusions The results of this study suggest that antibody interaction effects are important factors in the response to anti-TNF therapy in RA.This project was supported by UCB Pharma

    Variation at interleukin-6 receptor gene is associated to joint damage in rheumatoid arthritis.

    Get PDF
    Journal Article; Multicenter Study; Research Support, Non-U.S. Gov't;INTRODUCTION Interleukin-6 (IL-6) cytokine signaling is key in Rheumatoid Arthritis (RA) pathophysiology. Blocking IL-6 receptor (IL6R) has proven to be a highly effective treatment to prevent joint damage. This study was performed to investigate the association between the genetic variation at IL6R gene and the severity of joint damage in RA. METHODS IL6R gene tagging SNPs (n = 5) were genotyped in a discovery group of 527 RA patients from 5 different university hospitals from Spain. For each marker, a linear regression analysis was performed using an additive model and adjusting for the years of evolution of the disease, autoantibody status, gender and age. Haplotypes combining the SNPs were also estimated and tested for association with the level of joint destruction. Using an independent cohort of 705 RA patients from 6 university hospitals we performed a validation study of the SNPs associated in the discovery phase. RESULTS In the discovery group we found a highly significant association between IL6R SNP rs4845618 and the level of joint destruction in RA (P = 0.0058, P corrected = 0.026), and a moderate association with SNP rs4453032 (P = 0.02, P corrected = 0.05). The resulting haplotype from both SNPs was more significantly associated with joint damage (P = 0.0037, P corrected = 0.011). Using the validation cohort, we replicated the association between the two IL-6R SNPs with the degree of joint destruction in RA (P = 0.007 and P = 0.04, meta-analysis P = 0.00011 and P = 0.0021, respectively), and the haplotype association (P = 0.0058, meta-analysis P = 6.64 e-5). CONCLUSIONS Genetic variation at IL6R gene is associated with joint damage in RA.This study was funded by the Spanish Ministry of Economy and Competitiveness (grant numbers PSE-010000-2006-6 and IPT-010000-2010-36).Ye

    A genome-wide association study identifies SLC8A3 as a susceptibility locus for ACPA-positive rheumatoid arthritis.

    No full text
    RA patients with serum ACPA have a strong and specific genetic background. The objective of the study was to identify new susceptibility genes for ACPA-positive RA using a genome-wide association approach. A total of 924 ACPA-positive RA patients with joint damage in hands and/or feet, and 1524 healthy controls were genotyped in 582 591 single-nucleotide polymorphisms (SNPs) in the discovery phase. In the validation phase, the most significant SNPs in the genome-wide association study representing new candidate loci for RA were tested in an independent cohort of 863 ACPA-positive patients with joint damage and 1152 healthy controls. All individuals from the discovery and validation cohorts were Caucasian and of Southern European ancestry. In the discovery phase, 60 loci not previously associated with RA risk showed evidence for association at P SLC8A3 was identified as a new risk locus for ACPA-positive RA. This study demonstrates the advantage of analysing relevant subsets of RA patients to identify new genetic risk variants

    Genome-wide Association Study Meta-analysis Identifies Five New Loci For Systemic Lupus Erythematosus

    No full text
    Background: Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with a complex genetic inheritance. Genome-wide association studies (GWAS) have significantly increased the number of significant loci associated with SLE risk. To date, however, established loci account for less than 30% of the disease heritability and additional risk variants have yet to be identified. Here we performed a GWAS followed by a meta-analysis to identify new genome-wide significant loci for SLE. Methods: We genotyped a cohort of 907 patients with SLE (cases) and 1524 healthy controls from Spain and performed imputation using the 1000 Genomes reference data. We tested for association using logistic regression with correction for the principal components of variation. Meta-analysis of the association results was subsequently performed on 7,110,321 variants using genetic data from a large cohort of 4036 patients with SLE and 6959 controls of Northern European ancestry. Genetic association was also tested at the pathway level after removing the effect of known risk loci using PASCAL software. Results: We identified five new loci associated with SLE at the genome-wide level of significance (p < 5 x 10(-8)): GRB2, SMYD3, ST8SIA4, LAT2 and ARHGAP27. Pathway analysis revealed several biological processes significantly associated with SLE risk: B cell receptor signaling (p = 5.28 x 10(-6)), CTLA4 co-stimulation during T cell activation (p = 3.06 x 10(-5)), interleukin-4 signaling (p = 3.97 x 10(-5)) and cell surface interactions at the vascular wall (p = 4.63 x 10(-5)). Conclusions: Our results identify five novel loci for SLE susceptibility, and biologic pathways associated via multiple low-effect-size loci

    Additional file 1: Table S1. of Variation at interleukin-6 receptor gene is associated to joint damage in rheumatoid arthritis

    No full text
    Presenting the association of IL6R locus SNPs with joint damage in the discovery stage under alternative genetic models, Table S2. Presenting the association of IL6R locus SNPs with joint damage in the discovery stage according to ACPA or RF status, and Table S3. Presenting the enhancer histone marks associated with the IL6R rs4845618 SNP identified in 111 reference epigenomes from the Epigenome Roadmap Project

    Relationship of weather types on the seasonal and spatial variability of rainfall, runoff, and sediment yield in the western Mediterranean basin

    No full text
    Summarization: Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.Presented on: Atmospher
    corecore