778 research outputs found
Light scattering observations of spin reversal excitations in the fractional quantum Hall regime
Resonant inelastic light scattering experiments access the low lying
excitations of electron liquids in the fractional quantum Hall regime in the
range . Modes associated with changes in the charge and
spin degrees of freedom are measured. Spectra of spin reversed excitations at
filling factor and at identify a structure
of lowest spin-split Landau levels of composite fermions that is similar to
that of electrons. Observations of spin wave excitations enable determinations
of energies required to reverse spin. The spin reversal energies obtained from
the spectra illustrate the significant residual interactions of composite
fermions. At energies of spin reversal modes are larger but
relatively close to spin conserving excitations that are linked to activated
transport. Predictions of composite fermion theory are in good quantitative
agreement with experimental results.Comment: Submitted to special issue of Solid State Com
Narrow-width approximation accuracy
A study of general properties of the narrow-width approximation (NWA) with
polarization/spin decorrelation is presented. We prove for total rates of
arbitrary resonant decay or scattering processes with an on-shell intermediate
state decaying via a cubic or quartic vertex that decorrelation effects vanish
and the NWA is of order Gamma. Its accuracy is then determined numerically for
all resonant 3-body decays involving scalars, spin-1/2 fermions or vector
bosons. We specialize the general results to MSSM benchmark scenarios.
Significant off-shell corrections can occur - similar in size to QCD
corrections. We qualify the configurations in which a combined consideration is
advisable. For this purpose, we also investigate process-independent methods to
improve the NWA.Comment: 22 pages, 7 figures, 1 table; added reference, version to appear in
Nucl. Phys.
On the use of porous nanomaterials to photoinactivate E. coli with natural sunlight irradiation
.An organic-inorganic hybrid material based on nanocrystals of zeolite L functionalized with silicon phthalocyanine can develop interesting properties when activated by natural sunlight. Cell viability tests show that this nanomaterial is able to photoinactivate mouse cells and Escherichia coli (. E. coli) bacteria, and is also very efficient against the self-defense mechanisms of E. coli during the first minutes of solar irradiation. The results suggest that Gram-negative E. coli become more resistant to singlet oxygen-based disinfection treatments at higher temperatures. The present work contributes to the development of new functional materials for a range of important sunlight-based applications. © 2015 Elsevier Lt
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV
Mid-rapidity transverse mass spectra and multiplicity densities of charged
and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC.
The spectra are exponential in transverse mass, with an inverse slope of about
280 MeV in central collisions. The multiplicity densities for these particles
scale with the negative hadron pseudo-rapidity density. The charged kaon to
pion ratios are and
for the most central collisions. The ratio is lower than the same
ratio observed at the SPS while the is higher than the SPS result.
Both ratios are enhanced by about 50% relative to p+p and +p
collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
The energy dependence of angular correlations inferred from mean- fluctuation scale dependence in heavy ion collisions at the SPS and RHIC
We present the first study of the energy dependence of angular
correlations inferred from event-wise mean transverse momentum
fluctuations in heavy ion collisions. We compare our large-acceptance
measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to
SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure
suggests that the principal source of $p_t$ correlations and fluctuations is
minijets (minimum-bias parton fragments). We observe a dramatic increase in
correlations and fluctuations from SPS to RHIC energies, increasing linearly
with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related
fluctuations near 10 GeV.Comment: 10 pages, 4 figure
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
- …