1,267 research outputs found
Antimicrobial activity of Bursera morelensis ramírez essential oil
Background: Bursera morelensis, known as “Aceitillo”, is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis.Materials and Methods: The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated.Results: GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was α-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae, V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC50 = 2.27 mg/mL) was the most sensitive fungal strain.Conclusions: This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species.Keywords: Essential oil; Medicinal plants; Tehuacan-Cuicatlan Valley; Burseraceae; Burser
HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays
The HyperCP experiment (Fermilab E871) was designed to search for rare
phenomena in the decays of charged strange particles, in particular CP
violation in and hyperon decays with a sensitivity of
. Intense charged secondary beams were produced by 800 GeV/c protons
and momentum-selected by a magnetic channel. Decay products were detected in a
large-acceptance, high-rate magnetic spectrometer using multiwire proportional
chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection
system. Nearly identical acceptances and efficiencies for hyperons and
antihyperons decaying within an evacuated volume were achieved by reversing the
polarities of the channel and spectrometer magnets. A high-rate
data-acquisition system enabled 231 billion events to be recorded in twelve
months of data-taking.Comment: 107 pages, 45 Postscript figures, 14 tables, Elsevier LaTeX,
submitted to Nucl. Instrum. Meth.
Asymmetric nuclear matter:the role of the isovector scalar channel
We try to single out some qualitative new effects of the coupling to the
-isovector-scalar meson introduced in a minimal way in a
phenomenological hadronic field theory. Results for the equation of state
() and the phase diagram of asymmetric nuclear matter () are
discussed. We stress the consistency of the -coupling introduction in a
relativistic approach. New contributions to the slope and curvature of the
symmetry energy and the neutron-proton effective mass splitting appear
particularly interesting. A more repulsive for neutron matter at high
baryon densities is expected. Effects on new critical properties of warm ,
mixing of mechanical and chemical instabilities and isospin distillation, are
also presented. The influence is mostly on the {\it isovectorlike}
collective response.
The results are largely analytical and this makes the physical meaning quite
transparent. Implications for nuclear structure properties of drip-line nuclei
and for reaction dynamics with Radioactive Beams are finally pointed out.Comment: 12 pages, 10 Postscript figure
Economical and technological study of surface grinding versus face milling in hardened AISI D3 steel machining operations
[EN] This work deals with the technological and economic considerations required to select face milling vs. surface grinding operations in the manufacture of hardened steel flat surfaces for dies and moulds. In terms of technological considerations, factors such as component geometry, material and surface quality (dimensional tolerance and surface finish) are taken into account. The economic considerations include the cost of machine depreciation, labour and consumables (cutting tools in face milling vs. grinding wheels and dressing tool in surface grinding). A case study is presented based on the prismatic components in ceramic tile moulds and their associated manufacturing operations. Surface grinding and face milling experimentation was conducted on cold work steel AISI D3 (with hardness of 60 HRC) with aluminium oxide grinding wheels and coated tungsten carbide cutting tool, respectively. Technological attributes and economics of face milling are compared with surface grinding of this type of mould components. The main conclusion is that face milling with chamfered edge preparation in coated tungsten carbide tools is a competitive process, compared with surface grinding, in terms of product quality and economics.The research team would like to acknowledge the main support of the Caja Castello-Bancaixa Foundation and Universitat Jaume I, which support the project: "Integration of Planning, Execution and Control of High Speed Machining Operations in Collaborative Engineering Environments: Application in Moulds for Tile Industry", the ceramic tile mould company MACER S.L., and would like to extend their gratitude to Roberto Menendez, student of industrial engineering. Particular thanks go to the Programme Alssan: European Union Programme of High Level Scholarships for Latin America (scholarship no. E04D030982MX). Additional support was provided by Tecnologico de Monterrey through the research group in Mechatronics and Intelligent Machines (http://cidyt.mty.itesm/cimec).Vila Pastor, C.; Siller, H.; Rodríguez, C.; Bruscas Bellido, G.; Serrano, J. (2012). Economical and technological study of surface grinding versus face milling in hardened AISI D3 steel machining operations. International Journal of Production Economics. 138(2):273-283. doi:10.1016/j.ijpe.2012.03.028S273283138
The Risk of Contracting COVID-19 Is Not Increased in Patients With Celiac Disease
The World Health Organization declared coronavirus disease-2019 (COVID-19) a global pandemic in March 2020. Since then, there are more than 34 million cases of COVID-19 leading to more than 1 million deaths worldwide. Numerous studies suggest that celiac disease (CeD), a chronic immune-mediated gastrointestinal condition triggered by gluten, is associated with an increased risk of respiratory infections.1-3 However, how it relates to the risk of COVID-19 is unknown. To address this gap, we conducted a cross-sectional study to evaluate whether patients with self-reported CeD are at an increased risk of contracting COVID-19
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
Automated Analysis in Feature Modelling and Product Configuration
The automated analysis of feature models is one of the thriving
topics of research in the software product line and variability management
communities that has attracted more attention in the last years.
A recent literature review reported that more than 30 analysis operations
have been identi ed and di erent analysis mechanisms have been
proposed. Product con guration is a well established research eld with
more than 30 years of successful applications in di erent industrial domains.
Our hypothesis, that is not really new, is that these two independent
areas of research have interesting synergies that have not been
fully explored. To try to explore the potential synergies systematically, in
this paper we provide a rapid review to bring together these previously
disparate streams of work. We de ne a set of research questions and give
a preliminary answer to some of them. We conclude that there are many
research opportunities in the synergy of these independent areas.Ministerio de Ciencia e Innovación TIN2009- 07366Junta de Andalucía TIC-590
- …