255 research outputs found

    Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model - BioControl

    Get PDF
    Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) is a ladybird beetle native to temperate and subtropical parts of Asia. Since 1916 populations of this species have been introduced throughout the world, either deliberately, or by accident through international transport. Harmonia axyridis was originally released as a classical biological control agent of aphid and coccid pests in orchards and forests, but since 1994 it is also available as a commercial product for augmentative control in field and greenhouse crops. It is a very voracious and effective natural enemy of aphids, psyllids and coccids in various agricultural and horticultural habitats and forests. During the past 20 years, however, it has successfully invaded non-target habitats in North America (since 1988), Europe (1999) and South America (2001) respectively in a short period of time, attacking a wide range of non-pest species in different insect orders. Becoming part of the agricultural commercial pathway, it is prone to being introduced into large areas across the world by accident. We use the CLIMEX programme (v2) to predict the potential geographical distribution of H. axyridis by means of matching the climate of its region of origin with other regions in the world and taking in account biological characteristics of the species. Establishment and spread seem likely in many regions across the world, including those areas which H. axyridis has already invaded (temperate Europe, North America). Based on the CLIMEX prediction a large part of Mediterranean Europe, South America, Africa, Australia and New Zealand seem highly suitable for long-term survival of H. axyridis as well. In addition we evaluate CLIMEX as a strategic tool for estimating establishment potential as part of an environmental risk assessment procedure for biological control agents we discuss biological and ecological aspects necessary to fine-tune its establishment and spread in areas after it has been introduce

    Shed urinary ALCAM is an independent prognostic biomarker of three-year overall survival after cystectomy in patients with bladder cancer.

    Get PDF
    Proteins involved in tumor cell migration can potentially serve as markers of invasive disease. Activated Leukocyte Cell Adhesion Molecule (ALCAM) promotes adhesion, while shedding of its extracellular domain is associated with migration. We hypothesized that shed ALCAM in biofluids could be predictive of progressive disease. ALCAM expression in tumor (n = 198) and shedding in biofluids (n = 120) were measured in two separate VUMC bladder cancer cystectomy cohorts by immunofluorescence and enzyme-linked immunosorbent assay, respectively. The primary outcome measure was accuracy of predicting 3-year overall survival (OS) with shed ALCAM compared to standard clinical indicators alone, assessed by multivariable Cox regression and concordance-indices. Validation was performed by internal bootstrap, a cohort from a second institution (n = 64), and treatment of missing data with multiple-imputation. While ALCAM mRNA expression was unchanged, histological detection of ALCAM decreased with increasing stage (P = 0.004). Importantly, urine ALCAM was elevated 17.0-fold (P < 0.0001) above non-cancer controls, correlated positively with tumor stage (P = 0.018), was an independent predictor of OS after adjusting for age, tumor stage, lymph-node status, and hematuria (HR, 1.46; 95% CI, 1.03-2.06; P = 0.002), and improved prediction of OS by 3.3% (concordance-index, 78.5% vs. 75.2%). Urine ALCAM remained an independent predictor of OS after accounting for treatment with Bacillus Calmette-Guerin, carcinoma in situ, lymph-node dissection, lymphovascular invasion, urine creatinine, and adjuvant chemotherapy (HR, 1.10; 95% CI, 1.02-1.19; P = 0.011). In conclusion, shed ALCAM may be a novel prognostic biomarker in bladder cancer, although prospective validation studies are warranted. These findings demonstrate that markers reporting on cell motility can act as prognostic indicators

    Influence of Scanner Precision and Analysis Software in Quantifying Three-Dimensional Intraoral Changes: Two-Factor Factorial Experimental Design

    Get PDF
    Background: Three-dimensional scans are increasingly used to quantify biological topographical changes and clinical health outcomes. Traditionally, the use of 3D scans has been limited to specialized centers owing to the high cost of the scanning equipment and the necessity for complex analysis software. Technological advances have made cheaper, more accessible methods of data capture and analysis available in the field of dentistry, potentially facilitating a primary care system to quantify disease progression. However, this system has yet to be compared with previous high-precision methods in university hospital settings. Objective: The aim of this study was to compare a dental primary care method of data capture (intraoral scanner) with a precision hospital-based method (laser profilometer) in addition to comparing open source and commercial software available for data analysis. Methods: Longitudinal dental wear data from 30 patients were analyzed using a two-factor factorial experimental design. Bimaxillary intraoral digital scans (TrueDefinition, 3M, UK) and conventional silicone impressions, poured in type-4 dental stone, were made at both baseline and follow-up appointments (mean 36 months, SD 10.9). Stone models were scanned using precision laser profilometry (Taicaan, Southampton, UK). Three-dimensional changes in both forms of digital scans of the first molars (n=76) were quantitatively analyzed using the engineering software Geomagic Control (3D Systems, Germany) and freeware WearCompare (Leeds Digital Dentistry, UK). Volume change (mm3) was the primary measurement outcome. The maximum point loss (μm) and the average profile loss (μm) were also recorded. Data were paired and skewed, and were therefore compared using Wilcoxon signed-rank tests with Bonferroni correction. Results: The median (IQR) volume change for Geomagic using profilometry and using the intraoral scan was –0.37 mm3 (–3.75-2.30) and +0.51 mm3 (–2.17-4.26), respectively (P<.001). Using WearCompare, the median (IQR) volume change for profilometry and intraoral scanning was –1.21 mm3 (–3.48-0.56) and –0.39 mm3 (–3.96-2.76), respectively (P=.04). WearCompare detected significantly greater volume loss than Geomagic regardless of scanner type. No differences were observed between groups with respect to the maximum point loss or average profile loss. Conclusions: As expected, the method of data capture, software used, and measurement metric all significantly influenced the measurement outcome. However, when appropriate analysis was used, the primary care system was able to quantify the degree of change and can be recommended depending on the accuracy needed to diagnose a condition. Lower-resolution scanners may underestimate complex changes when measuring at the micron level

    Associations between tooth wear and dental sleep disorders : A narrative overview

    Get PDF
    Objectives Tooth wear is a common finding in adult patients with dental sleep disorders. The aim of this paper was to review the literature on the possible associations between tooth wear and the following dental sleep disorders: sleep-related oro-facial pain, oral moistening disorders, gastroesophageal reflux disease (GERD), obstructive sleep apnoea syndrome (OSAS) and sleep bruxism. Methods A PubMed search was performed on 1 June 2018 using MeSH terms in the following query: Tooth Wear AND (Facial Pain OR Temporomandibular Joint Disorders OR Xerostomia OR Sialorrhea OR Gastroesophageal Reflux OR Sleep Apnea Syndrome OR Sleep Bruxism). Results The query yielded 706 reports on tooth wear and the mentioned dental sleep disorders. Several associations between tooth wear and the dental sleep disorders were suggested in the literature. It could be concluded that: (a) tooth wear is associated with dental pain and/or hypersensitivity; (b) oral dryness is associated with tooth wear, oro-facial pain and sleep bruxism; (c) GERD is associated with tooth wear, oro-facial pain, oral dryness, OSAS and sleep bruxism; (d) OSAS is associated with oral dryness, GERD and sleep bruxism; and (e) sleep bruxism is associated with tooth wear. Conclusions Tooth wear is associated with the dental sleep disorders oro-facial pain, oral dryness, GERD and sleep bruxism. The dental sleep disorders are interlinked with each other, which leads to indirect associations as well, and makes the consequences of each single condition difficult to disentangle. Knowledge of these associations is clinically relevant, but more research is needed to confirm their validity.Peer reviewe

    Insulin Resistance Impairs Circulating Angiogenic Progenitor Cell Function and Delays Endothelial Regeneration

    Get PDF
    OBJECTIVE Circulating angiogenic progenitor cells (APCs) participate in endothelial repair after arterial injury. Type 2 diabetes is associated with fewer circulating APCs, APC dysfunction, and impaired endothelial repair. We set out to determine whether insulin resistance adversely affects APCs and endothelial regeneration. RESEARCH DESIGN AND METHODS We quantified APCs and assessed APC mobilization and function in mice hemizygous for knockout of the insulin receptor (IRKO) and wild-type (WT) littermate controls. Endothelial regeneration after femoral artery wire injury was also quantified after APC transfusion. RESULTS IRKO mice, although glucose tolerant, had fewer circulating Sca-1+/Flk-1+ APCs than WT mice. Culture of mononuclear cells demonstrated that IRKO mice had fewer APCs in peripheral blood, but not in bone marrow or spleen, suggestive of a mobilization defect. Defective vascular endothelial growth factor–stimulated APC mobilization was confirmed in IRKO mice, consistent with reduced endothelial nitric oxide synthase (eNOS) expression in bone marrow and impaired vascular eNOS activity. Paracrine angiogenic activity of APCs from IRKO mice was impaired compared with those from WT animals. Endothelial regeneration of the femoral artery after denuding wire injury was delayed in IRKO mice compared with WT. Transfusion of mononuclear cells from WT mice normalized the impaired endothelial regeneration in IRKO mice. Transfusion of c-kit+ bone marrow cells from WT mice also restored endothelial regeneration in IRKO mice. However, transfusion of c-kit+ cells from IRKO mice was less effective at improving endothelial repair. CONCLUSIONS Insulin resistance impairs APC function and delays endothelial regeneration after arterial injury. These findings support the hypothesis that insulin resistance per se is sufficient to jeopardize endogenous vascular repair. Defective endothelial repair may be normalized by transfusion of APCs from insulin-sensitive animals but not from insulin-resistant animals

    Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD).</p> <p>Methods</p> <p>The study was carried out in 4 steps: i) patient room design, ii) CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source software <it>Code_Saturne</it><sup>® </sup>(<url>http://www.code-saturne.org</url>) was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations.</p> <p>Results</p> <p>We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to enter into the positive pressure room when the access door was opened, while 2°C had little effect. Based on these findings the constructed burn unit was outfitted with supplemental air exhaust ducts over the doors to compensate for the thermal convective flows.</p> <p>Conclusions</p> <p>CFD simulations proved to be a particularly useful tool for the design and optimization of a burn unit treatment room. Our results, which have been confirmed qualitatively by experimental investigation, stressed that airborne transfer of microbial size particles via thermal convection flows are able to bypass the protective overpressure in the patient room, which can represent a potential risk of cross contamination between rooms in protected environments.</p

    New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration

    Get PDF
    Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways

    Integrating adverse effect analysis into environmental risk assessment for exotic generalist arthropod biological control agents: a three-tiered framework

    Get PDF
    Environmental risk assessments (ERAs) are required before utilizing exotic arthropods for biological control (BC). Present ERAs focus on exposure analysis (host/prey range) and have resulted in approval of many specialist exotic biological control agents (BCA). In comparison to specialists, generalist arthropod BCAs (GABCAs) have been considered inherently risky and less used in classical biological control. To safely consider exotic GABCAs, an ERA must include methods for the analysis of potential effects. A panel of 47 experts from 14 countries discussed, in six online forums over 12 months, scientific criteria for an ERA for exotic GABCAs. Using four case studies, a three-tiered ERA comprising Scoping, Screening and Definitive Assessments was developed. The ERA is primarily based on expert consultation, with decision processes in each tier that lead to the approval of the petition or the subsequent tier. In the Scoping Assessment, likelihood of establishment (for augmentative BC), and potential effect(s) are qualitatively assessed. If risks are identified, the Screening Assessment is conducted, in which 19 categories of effects (adverse and beneficial) are quantified. If a risk exceeds the proposed risk threshold in any of these categories, the analysis moves to the Definitive Assessment to identify potential non-target species in the respective category(ies). When at least one potential non-target species is at significant risk, long-term and indirect ecosystem risks must be quantified with actual data or the petition for release can be dismissed or withdrawn. The proposed ERA should contribute to the development of safe pathways for the use of low risk GABCAs
    corecore